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Abstract

From Instagram to Tiktok, social media has grown to be an
intrinsic part of modern society today. Out of many, one of
its most prominent features that caught my attention was the
different types of face filters installed in cameras of social
media apps. With social media, there is no limit to how you
want your photos to look. I thought this was particularly in-
teresting. Using the concepts of matrix manipulation of RGB
excel pixels, I decided to go a step further and explore the ap-
plication of matrix calculations in creating face filters.
Keywords: matrices, RGB, Gaussian blur

1 Pixel Project
Let’s break down the basic principles of how the pixels

of images work in Excel. When digital photos are turned into
excel spreadsheets, each pixel is divided into three RGB val-
ues: The amount of red, green, and blue stored in the pixel.
Therefore, performing matrix multiplication to each pixel’s
set of RGB values allows us to manipulate the values in the
photos and change how they appear on the screen.

Figure 1: Overlaying a vintage filter on an image

Here, I was able to create a color filter by breaking
the image above into pixels and multiplying the portion of
the values of this image by the portion of the values of the
original image. The formula used to perform this calculation
was DA1$A$228+(1-$A$228)HA1, where DA1 was the
location of the first pixel of the original image and HA1 was
the location of the first pixel of the “filter.” Essentially, what

this calculation is doing is scaling down the RGB matrix
of the original image to a certain level (for example, 0.5),
scaling down the RGB matrix of the filter to a number that
is the scale factor of the RGB matrix of the original image
subtracted from 1 (which in this case would be 0.5), and
adding the two matrices together to create a new matrix that
is the result of the matrix calculation. To put this into the
perspective of number calculations, let’s say one of the pixel
values of the original image has an RGB matrix of [206, 192,
175], and one of the pixel values of the filter has an RGB
matrix of [189, 131, 120].

A =

(
206
192
175

)
, B =

(
189
131
120

)
;

0.5 ·A =

(
103
96
87.5

)

0.5 ·B =

(
94.5
65.5
60

)

0.5 ·A+ 0.5 ·B =

(
197.5
161.5
147.5

)

Figure 2: A, B, and 0.5 ·A+ 0.5 ·B

I wanted to use these concepts to create filters that
somewhat imitate the actual filters that can be seen in social
media apps.

2 Extension 1
I first converted two photos into RGB pixels and

pasted them onto Excel.
I decided to set the opacity to 50% as it

made the most sense. Then, I used the formula
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Figure 3: 2 images of Audrey Hepburn

A1*$A$611+(1-$A$611)*HA1 (the column and
row number changes for each pixel) which sets the opacity
of the photos to 50% and combine them together to create
a single image. This process allowed me to generate an
average face between the younger and older version of
Audrey Hepburn. I was aiming to imitate the filters that take
your baby face and create a hypothetical version of your
older self.

Figure 4: Blended image of Audrey Hepburn

3 Investigation 2/Extension 2 (Coding)
For my second extension, I wanted to create a fil-

ter with coding that imitates the Photoshop filters like face
brightening or mirroring effects. To achieve this, I used basic
matrix calculation principles like matrix addition and multi-
plying the inverse of an identity matrix. For the brightening
effect, I used the following formula:

A =




a11 . . . a1n
...

. . .
...

am1 . . . amn


+




b11 . . . b1n
...

. . .
...

bm1 . . . bmn




=




a11 + b11 . . . a1n + b1n
...

. . .
...

am1 + bm1 . . . amn + bmn




This is because the colors get brighter approach white
as the RGB values get closer to 255. For example, if a pixel
in the original image had the RGB values of [100 100 100],
and a matrix of [30 30 30] was added, the result would be
[130 130 130] pixel would achieve a greater RGB value thus
a lighter color. Here, matrix A represents the RGB values
of the original image, and matrix B represents the “filter”.
I used the inverse of the identity matrix to create a mirror-
ing filter. This matrix allows the values in the matrix to be
mirrored like the example below. Here, you can see that mul-
tiplying the inverse of the identity matrix flips the location
of a c and b d.

I′ =




0 . . . 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

1 0 . . . 0





a b
c d


·

0 1
1 0


=


0 + b a+ 0
0 + d c+ 0



=


b a
d c



I thought it was particularly interesting and decided to
employ this method to try mirroring images as well using
the same principle.

1 # Whitening skin
2 img = cv2.imread("face.jpg", cv2.

IMREAD_COLOR)
3 mag = img.shape
4
5 whiten = np.zeros((mag[0], mag[1], 3))
6
7 whiten[:,:,0] = np.ones ([mag[0], mag

[1]])*30
8 whiten[:,:,1] = np.ones ([mag[0], mag

[1]])*30
9 whiten[:,:,2] = np.ones ([mag[0], mag

[1]])*30
10
11 cv2.imwrite(’whiten.jpg’, whiten)
12 whiten = cv2.imread("whiten.jpg", cv2.

IMREAD_COLOR)
13
14 applied = cv2.add(img, whiten)
15 cv2.imshow(’original’, img)
16
17 cv2.imshow(’applied’, applied)
18
19 print(mag)
20
21 # display image for 20 seconds
22 cv2.waitkey(20000)
23 cv.2 destroyAllWindows()

--
1 (6720, 4480, 3)

The printed value from the second box (6720, 4480,
3) shows the size of the matrix of the photos. This means
that the original photo had three matrices with the size of
6720 × 4480, each matrix being either the red, green, or

2

blue component of the pixels. With this original matrix, A,
the filter matrix, B, would also be 6720 × 4480 with the
same value (in this case, it’s 30) in all entries. This snippet of
code allows the image to gain higher RGB values following
the matrix addition rule. Thus, the B matrix has to be added
to all three matrices of A, and the three matrices altogether
show the final image.

Figure 5: Original (L) After adding filter (R)

The second step was to create a mirroring filter that re-
verses the image. In Unit 1, while doing the cartoon project,
the matrix that allowed the plots to be reflected against the
y-axis was the following matrix.

C =

(
−1 0
0 1

)

However, because we are dealing with RGB values in
this project, this matrix can not be used (color intensity can
not be negative). Therefore the alternative matrix that could
be used here was the inverse of the identity matrix.

1 # getting mirror image
2
3 img_flig_lr = cv2.flip(img, 1)
4 cv2.imshow(’flip’,img_flip_lr)
5
6 #display image for 20 seconds
7 cv2.waitKey(20000)
8 cv2.destroyAllWindows()

This code snippet follows the same principle as the
matrix calculation with the inverse of the identity matrix,
which, as shown above, results in a flipped image. This code
prints the following mirrored image.

The third thing I decided to add was a blurring filter
that intentionally blurs the photo. This is often used to Pho-
toshop people’s skin and remove any blemishes or pimples.
The formula used here was the Gaussian blur.

Figure 6: Original Image

The Gaussian filter formula calculates the weighted
average of the current pixel and neighboring pixel values
to replace the current pixel value. The closer to the cur-
rent pixel, the greater the weight, and the farther, the smaller
the weight. When this formula is used in images, it reduces
noise and smoothens the image. However, the border of the
image is also blurred. In order to preserve the borders, the
original formula is modified:

1 blur = cv2.bilateralFilter(applied
,50,75,75)

2 # bilateralFilter(src, dst1, 5, 250, 10)
;

3 blur2 = cv2.cvtColor(blur, cv2.
COLOR_BGR2RGB)

4 plt.subplot(121),plt.imshow(img2),plt.
title(’Original’)

5 plt.xtics([]), plt.yticks([])
6 plt.subplot(122),plt.imshow(blur2),plt.

title(’Blurred’)
7 plt.xticks([]), plt.yticks([])
8 plt.show()

3
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9
10 cv2.imshow("before", applied)
11 cv2.imshow("after", blur)
12 cv2.waitKey(3000)
13 cv2.destroyAllWindows()

This code snippet employs the Gaussian blur formula
and blurs the photo. The (50, 75, 75) in the first line of the
code represent the diameter, sigmaColor, and sigmaSpace,
respectively. The larger the diameter is, the blurrier the photo
gets due to the fact that larger diameters cover larger areas.

Figure 7: Original (L) After the blur filter (R)

4 Summary
Overall, I really enjoyed the freedom of choosing the

topic and tinkering with different types of computer soft-
ware. Coming up with an idea was definitely challenging at
first, but I was eventually able to generate original ideas that
really helped me propel the project forward. Although my
extensions were not perfect, I genuinely enjoyed the pro-
cess and was satisfied with my product. To summarize, this
project uses the basic principles of matrix calculation and
applies them in a broader context from the perspective of
images. The main theme of this project was face filters, and
I aimed to imitate popular filters on social media or camera
apps on my own using Excel and Jupyter notebook. It was a
very interesting experience being able to merge visuals with
math together and understand how there is always some sort
of math beneath everything.
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Abstract

Recursive sequences are well-known and well-studied. Gen-
erally, when learning about them in earlier math classes such
as Precalculus and Algebra, the only way they were computed
were...recursively. For instance, the fibonacci sequence tends
to be calculated by manually adding the terms 0+1 = 1+1 =
2+1 = 3... However, representing recursive sequences in this
manner hides a lot of the intricacies and beauty in recursive
sequences...especially the fibonacci sequence. After explor-
ing the fibonacci sequence, we go on to generate our own
spirals with complex eigenvalues and calculate the transfor-
mations that form the spiral.
Keywords: Fibonacci sequence, eigenvalues, eigenvectors,
complex numbers, transformations, matrices

1 The Fibonacci Sequence
The Fibonacci sequence is a well-known sequence,

which consists of:

0, 1, 1, 2, 3, 5, 8, 13, 21...,

where each F (n) is the sum of the two previous terms:
F (n) = F (n− 1) + F (n− 2), and F (0) = 0, F (1) = 1.

When graphing the sequence on the x-y plane, where
the x-coordinate of each point is F (n − 1), and the y-
coordinate is F (n), one gets:

Figure 1: Points of the fibonacci sequenced graphed on the
x-y plane, where the x-coordinate is F (n − 1) and the y-
coordinate is F (n)

When fitting a curve, a line in this case, on the graph,
one gets:

Figure 2: Curve fit through the Fibonacci Sequence points

Where the equation of the line is y = 1.618x, 1.618 =
ϕ, the golden ratio!

This is a known property of the fibonacci numbers, if
you list enough numbers, the ratio of two consecutive terms
in the sequence gets closer and closer to ϕ. But how to prove
this?

Proving ϕ as the Fibonacci Ratio
If we write a term of the Fibonnaci sequence as a vec-

tor, namely (
Fn

Fn−1

)

then the sequence can be rewritten as a matrix:

(
Fn

Fn−1

)
=

(
1 1
1 0

)
·
(
Fn−1

Fn−2

)

As by matrix multiplication,(
Fn

Fn−1

)
=
(
Fn−1 + Fn−2

Fn−1

)

Next, as we have a matrix, and every point on the
graph showed above comes from multiplying the previous
point by the matrix, we can deduce some interesting obser-
vations. Namely, whenever we multiply by the matrix, the
point vector is being scaled on the same line...which is ex-
actly what an eigenvalue and eigenvector is supposed to do.
Therefore, if we can find the eigenvalue, λ, that should hope-
fully be the slope of the line, ϕ.

The eigenvalue can be calculated routinely, where the
determinant of the matrix

02
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tor, namely (
Fn

Fn−1

)

then the sequence can be rewritten as a matrix:

(
Fn

Fn−1

)
=

(
1 1
1 0

)
·
(
Fn−1

Fn−2

)

As by matrix multiplication,(
Fn

Fn−1

)
=
(
Fn−1 + Fn−2

Fn−1

)

Next, as we have a matrix, and every point on the
graph showed above comes from multiplying the previous
point by the matrix, we can deduce some interesting obser-
vations. Namely, whenever we multiply by the matrix, the
point vector is being scaled on the same line...which is ex-
actly what an eigenvalue and eigenvector is supposed to do.
Therefore, if we can find the eigenvalue, λ, that should hope-
fully be the slope of the line, ϕ.

The eigenvalue can be calculated routinely, where the
determinant of the matrix

(
1− λ 1
1 −λ

)
= 0

Thus, finding and solving the characteristic polyno-
mial yields:

(1− λ) · −λ− 1 = λ2 − λ− 1 = 0

By the quadratic formula,

λ =
1+

√
(−1)2+4·1

2 = 1+
√
5

2 = ϕ

Which IS the golden ratio!

Fibonacci Sequence isn’t Unique?
As we’ve already found the eigenvalues of the fi-

bonacci matrix, it naturally follows to find the eigenvectors

Reducing the matrix:

(
1− λ 1 0
1 −λ 0

)
=

(
1− ϕ 1 0
1 −ϕ 0

)
∼

(
1 −ϕ 0
0 0 0

)

Means that the eigenvector is
(
ϕ
1

)
.

As the eigenvalue is also ϕ, that means that it should
be an eigenvector for any starting value, as the y-coordinate
will eventually become ϕ times the x-coordinate. Let’s test
this:

Fibonacci Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
Random Sequence 1: 5, 6, 11, 17, 28, 45, 73, 118, 191, 309
Random Sequence 2: −1, 3, 2, 5, 7, 12, 19, 31, 50, 81, 131

144
89 = 1.618 and 309

191 = 1.618 and 131
81 = 1.618, they

all equal ϕ!

2 Recursive Sequences with Complex
Eigenvalues

Generating the Recursive Sequence
As calculating the eigenvalue, λ, for a 2x2 matrix re-

quires using the quadratic formula, if the characteristic poly-
nomial of the matrix’s discriminant is negative, λ will be
complex.

I had to find a matrix with complex eigenvalues that
still functioned as a series, which meant that my matrix A
had to be in the form:(
a b
1 0

)
as when multiplying

(
an

an−1

)
=

(
a b
1 0

)
·
(
an−1

an−2

)
,

the bottom value of the resultant matrix will be an−1, which
creates the ideal sequence.

Next, the matrix needs to have complex eigenvalues,

the characteristic polynomial of the matrix
(
a− λ b
1 −λ

)

is λ2 + λa− b = 0.
The discriminant of this polynomial is a2 + 4b, where

a2 + 4b < 0 needs to be satisfied. I chose a simple solution
where a = 2, b = −2, such that a2 + 4b = 22 + 4(−2) =
−4 < 0.

Thus, the matrix I created for this extension is A =(
2 −2
1 0

)
.

This means that my recursive sequence is defined as

(
an

an−1

)
=
(
2 −2
1 0

)
·
(
an−1

an−2

)

When graphing this sequence, an interesting relation-
ship is discovered:

Figure 3: Complex eigenvalue based recursive sequence
graphed on the x-y plane.

As opposed to a regular spiral, this spiral seems to be
tilted, as if it’s rotated about an ellipse. A derivation of the
transformations that leads to this is the premise of my exten-
sion.

Deriving the Transformations
In order to compute the transformations, the eigen-

values and eigenvectors would likely be necessary, so they
should be calculated first.

For the eigenvalues, simply solve the characteristic
polynomial we derived earlier of λ2 − 2λ + 2 = 0, where
λ = 2±

√
−4

2 = 1± i.
As the eigenvalues are conjugates, the eigenvectors

will likely be too...let’s compute the eigenvector when λ =
1 + i. The resulting matrix to row reduce is then:(

1− i −2 0
1 −1− i 0

)
∼

(
1 −1− i 0
0 0 0

)
, so my

eigenvector is
(
1 + i
1

)

Now, as is similar to separating the basis of a solu-
tion set, we can separate the real and imaginary parts of the
eigenvector to form a matrix whose columns represent the
eigenvector:

P =

(
1 1
1 0

)
, as the first column are the real compo-

nents and the second are the imaginary components.
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As by matrix multiplication,(
Fn

Fn−1

)
=
(
Fn−1 + Fn−2

Fn−1

)

Next, as we have a matrix, and every point on the
graph showed above comes from multiplying the previous
point by the matrix, we can deduce some interesting obser-
vations. Namely, whenever we multiply by the matrix, the
point vector is being scaled on the same line...which is ex-
actly what an eigenvalue and eigenvector is supposed to do.
Therefore, if we can find the eigenvalue, λ, that should hope-
fully be the slope of the line, ϕ.

The eigenvalue can be calculated routinely, where the
determinant of the matrix
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Abstract

Recursive sequences are well-known and well-studied. Gen-
erally, when learning about them in earlier math classes such
as Precalculus and Algebra, the only way they were computed
were...recursively. For instance, the fibonacci sequence tends
to be calculated by manually adding the terms 0+1 = 1+1 =
2+1 = 3... However, representing recursive sequences in this
manner hides a lot of the intricacies and beauty in recursive
sequences...especially the fibonacci sequence. After explor-
ing the fibonacci sequence, we go on to generate our own
spirals with complex eigenvalues and calculate the transfor-
mations that form the spiral.
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complex numbers, transformations, matrices

1 The Fibonacci Sequence
The Fibonacci sequence is a well-known sequence,

which consists of:

0, 1, 1, 2, 3, 5, 8, 13, 21...,

where each F (n) is the sum of the two previous terms:
F (n) = F (n− 1) + F (n− 2), and F (0) = 0, F (1) = 1.

When graphing the sequence on the x-y plane, where
the x-coordinate of each point is F (n − 1), and the y-
coordinate is F (n), one gets:

Figure 1: Points of the fibonacci sequenced graphed on the
x-y plane, where the x-coordinate is F (n − 1) and the y-
coordinate is F (n)

When fitting a curve, a line in this case, on the graph,
one gets:

Figure 2: Curve fit through the Fibonacci Sequence points

Where the equation of the line is y = 1.618x, 1.618 =
ϕ, the golden ratio!

This is a known property of the fibonacci numbers, if
you list enough numbers, the ratio of two consecutive terms
in the sequence gets closer and closer to ϕ. But how to prove
this?

Proving ϕ as the Fibonacci Ratio
If we write a term of the Fibonnaci sequence as a vec-

tor, namely (
Fn

Fn−1

)

then the sequence can be rewritten as a matrix:

(
Fn

Fn−1

)
=

(
1 1
1 0

)
·
(
Fn−1

Fn−2

)

As by matrix multiplication,(
Fn

Fn−1

)
=
(
Fn−1 + Fn−2

Fn−1

)

Next, as we have a matrix, and every point on the
graph showed above comes from multiplying the previous
point by the matrix, we can deduce some interesting obser-
vations. Namely, whenever we multiply by the matrix, the
point vector is being scaled on the same line...which is ex-
actly what an eigenvalue and eigenvector is supposed to do.
Therefore, if we can find the eigenvalue, λ, that should hope-
fully be the slope of the line, ϕ.

The eigenvalue can be calculated routinely, where the
determinant of the matrix
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Now, using diagonalization, we can trivially find the

transformation matrix with P−1 · A · P =

(
1 1
−1 1

)
, by

matrix multiplication.
Now, in the spiral we saw earlier, it’s intuitive that the

transformations taking place for each iteration is a rotation
and scalar (that’s how the spiral shape forms). This can also
be verified by looking at the form of our transformation ma-
trix.

The generic form of a scalar matrix is
(
r 0
0 r

)
, while

the generic form of a rotation matrix is
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

Multiplying these matrices yields:(
r cos(θ) −r sin(θ)
r sin(θ) r cos(θ)

)
, which is in the same form as

the transformation matrix we got as the top-left and bottom-
right term are the same, while the top-right and bottom-left
term are negative inverses of each other.

The scalar should simply be the magnitude of the
eigenvalue, λ = i+ i, which gives

√
12 + 12 =

√
2

We then get,
(

1 1
−1 1

)
=

(√
2 cos(θ) −

√
2 sin(θ)√

2 sin(θ)
√
2 cos(θ)

)
As cos(θ) = 1√

2
, θ = π

4 ,

which means that the spiral shown scales the points by
√
2

and rotates them by 45 degrees.
What I could deduce about the reasoning for the tilt

is that the transformation matrix we got will simply graph
the straight spiral, but because we separated the eigenvector
into the real and imaginary components, multiplying by ma-
trix A transforms it in the basis of the real and imaginary

components
(
1
1

)
and

(
1
0

)
, respectively.

Therefore, for any sequence with complex eigenval-
ues, the spiral transformations can be derived in this method.

3 Conclusion
Here, we initially investigated fibonacci sequences to

see how eigenvalues and eigenvectors can reveal new in-
sights about them. Then, we extended that knowledge to
trying to understand how recursive sequences with complex
eigenvalues work; eventually forming spirals and computing
the transformations which define them. This is really just
the brink of the surface when it comes to exploring com-
plex eigenvalues and eigenvectors, as the only patterns we
deduced are those of the transformations, whereas one can
also investigate the limits, the slope, and several other char-
acteristics of any spiral. A good supplement may also be ex-
ploring if the spirals differ when the starting matrix doesn’t
define a recursive sequence.
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Abstract

This paper presents an introduction to a major part of modern-
day combinatorics and number theory: partitions. The defini-
tion of a partition of any positive integer n is simply inves-
tigating the ways one can write n as a sum of positive inte-
gers. Mathematicians such as Ramanujan have been delving
into partitions for hundreds of years, finding identities and
formulae regarding the type of partition, how they’re con-
structed, and how they’re modeled, which for those who are
well-accustomed to calculus, is a great supplement to this pa-
per. But this paper will be focusing on the combinatorial side
of partitions, which is counting them based on a number of
restrictions. The content in this paper is interesting from a
pure math view (with a few, newly derived formulae), but also
serves as an expository piece for those who are competing in
math competitions.
Keywords: Stars and Bars, combinations, one-to-one corre-
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1 An Introduction to Partitions
In colloquial terms, a partition of a number n can be

thought of as an action of putting n balls into boxes, such
that if you have 5 balls and put 1 in one box, 2 in another
box, and 1 in a third box, the partition will be 1 + 2 + 1.
Thus, we can think about partitions in four different cate-
gories, listed below:
1. Balls are identical and boxes are distinguishable.
2. Balls are identical and boxes are identical.
3. Balls are distinguishable and boxes are identical.
4. Balls are distinguishable and boxes are distinguishable.

Notice how in case 1 where the boxes are distinguish-
able, 1 + 2 + 1 will be considered a different case from
2+ 1+1, whereas it would be considered as one possibility
in case 2. This paper will primarily be covering the first two
cases, where the first tool, Stars and Bars, will address case
1, and the second, recursive tool, will address case 2.

2 Stars and Bars
For some context, a sample problem which is solved

by stars and bars is presented:
Example 1.0.1 Dr. Evil’s 5th grade class has 6 students.
Dr. Evil has 6 identical candies to give to the 6 students.

However, as Dr. Evil is evil, he doesn’t necessarily want to
give 1 to each student. How many ways are there for him to
give these candies to the students?

When reading this problem, it’s easy to notice two
things. First, this follows our guideline of identical balls and
distinguishable boxes. In this case, the candies are identical,
and evidently, the students are distinguishable.

Secondly, if we were to physically count them by list-
ing them all out, it would (a) be extremely time-consuming
and (b) be extremely easy to miscount; this is where Stars
and Bars comes in.

Stars and Bars as a Picture
To start getting an idea of how to use stars and bars,

let’s utilize example 1.0.1. Let us imagine each of the
identical candies to be circles/balls as shown below.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [color=black!60, fill=white!5, very
thick](-1,0) circle (0.25); [color=black!60,
fill=white!5, very thick](-1,0) circle (0.25);

Let us imagine putting lines or bars in between gaps
of the circles to see how many candies every student gets. A
small example is demonstrated below.

[color=black!60, fill=white!5, very thick](-1,0) cir-
cle (0.25); [black, thick] (-1,0.5) – (-1,-0.5);
[color=black!60, fill=white!5, very thick](-1,0) cir-
cle (0.25); [black, thick] (-1,0.5) – (-1,-0.5);
[color=black!60, fill=white!5, very thick](-1,0) cir-
cle (0.25); [black, thick] (-1,0.5) – (-1,-0.5);
[color=black!60, fill=white!5, very thick](-1,0) cir-
cle (0.25); [black, thick] (-1,0.5) – (-1,-0.5);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[black, thick] (-1,0.5) – (-1,-0.5); [color=black!60,
fill=white!5, very thick](-1,0) circle (0.25);

[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25);

In the configuration above, we have divided the can-
dies into six partitions using five lines. Each partition has
size one, meaning every student has one candy. Now, let us

look at another configuration and base some conclusions on
that.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[black, thick] (-1,0.5) – (-1,-0.5); [black, thick] (-0.75,0.5)
– (-0.75,-0.5); [color=black!60, fill=white!5, very
thick](-1,0) circle (0.25);

[color=black!60, fill=white!5, very thick](-1,0)
circle (0.25); [black, thick] (-1,0.5) – (-1,-0.5); [black,
thick] (-0.75,0.5) – (-0.75,-0.5); [color=black!60,
fill=white!5, very thick](-1,0) circle (0.25);

[color=black!60, fill=white!5, very thick](-1,0)
circle (0.25); [black, thick] (-1,0.5) – (-1,-0.5);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);

[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25);

In the configuration shown above, we again have di-
vided the candies into six partitions using five lines. Yet,
the partition sizes are varying, meaning that each student
gets a varied amount of candies. The number of candies are
1, 0, 2, 0, 2, 1 per student from left to right.

These two configurations inform us of several things.
First of all, we can now be sure that the balls are identical,
and that the boxes are distinguishable. The balls are identi-
cal because we are partitioning the interchangeable balls.
In addition, with the sticks, we can repeatedly change the
candy distribution (to account for all the various cases). For
example, in the second configuration shown, the distribution
of candies is 1-0-2-0-2-1, yet the distribution could also be
2-0-1-2-1-0. Here, we see that the individual numbers can
be identical, yet the order is different. Therefore, the boxes
have to be distinctive for us to use this technique.

Adding to above, putting the bars in different gaps be-
tween the balls will yield us every possible arrangement,
thus ensuring we won’t be over-counting or under-counting.
Now, there will be two solutions presented to example 1.0.1.
The initial solution will be a “bogus” solution, which is an
incorrect solution, but it will indicate a common mistake.
The second solution will accurately utilize the strategy we
developed above.
Example 1.0.1: Dr.Evil’s 5th grade class has 6 students.
Dr.Evil has 6 identical candies to give to the 6 students.
However, as Dr. Evil is evil, he doesn’t necessarily want to
give 1 to each student. How many ways are there for him to
give these candies to the students?

Solution 1 (Bogus): We can now try to use our new discov-
eries to this problem. Let’s draw all 6 balls, representing the
6 candies.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [color=black!60, fill=white!5, very
thick](-1,0) circle (0.25); [color=black!60,
fill=white!5, very thick](-1,0) circle (0.25);

Now, let us mark all the gaps in which we can insert
the lines as we did above. Note that any person can have 0
candies, which is why we have to count the gap to the left

of the leftmost ball and the gap to the right of the rightmost
ball.

[black, thick] (-1.25,-0.25) – (-0.75,-0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [black, thick] (-1.25,-0.25) – (-0.75,-0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [black, thick] (-1.25,-0.25) – (-0.75,-0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [black, thick] (-1.25,-0.25) – (-0.75,-0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [black, thick] (-1.25,-0.25) – (-0.75,-0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [black, thick] (-1.25,-0.25) – (-0.75,-0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [black, thick] (-1.25,-0.25) – (-0.75,-0.25);

In the representation above, we can see that we marked
7 gaps for us to put the lines. Also, as we previously saw, we
need 5 lines to split the row of candies into 6 different parts.
Therefore, we have to choose 5 out of 7 gaps to put the lines.
The answer is then

(
7
5

)
= 21 .

So, why is this solution incorrect? We can look at the
2nd configuration we made on page 5. There, we put two
lines on the same gap to allow anyone to get 0 candies. In the
gaps we identified in solution 1, only the first and last student
could get 0 candies, meaning we severely undercounted.

However, adding in the extra gaps is not very easy.
Every gap between the balls could have up to 5 (all of the
lines) lines inside of it. As we initially had seven slots, we
would now have 7 · 5 = 35 slots. We now face an annoying,
yet true conundrum. If we have five gaps but only put one
line, it’s identical if the line is on the 1st gap, the 2nd gap,
the 3rd gap, the 4th gap, or the 5th gap.

The diagram below shows an example of this being
true. Assume the gaps are in between two balls.
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[black, thick] (-1.25,-0.25) – (-0.75,-0.25); [black,thick] (-
1,0.25) – (-1, -0.75); [black, thick] (-1.25,-0.25)
– (-0.75,-0.25); [black, thick] (-1.25,-0.25) –
(-0.75,-0.25); [black, thick] (-1.25,-0.25) – (-
0.75,-0.25); [black, thick] (-1.25,-0.25) – (-0.75,-
0.25); [color=black!60, fill=white!5, very thick](-1,0)
circle (0.25);

Putting just one line in the first slot like that is equiva-
lent to putting just one line on another gap, as shown below.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[black, thick] (-1.25,-0.25) – (-0.75,-0.25);

[black, thick] (-1.25,-0.25) – (-0.75,-
0.25); [black, thick] (-1.25,-0.25) – (-0.75,-0.25);
[black, thick] (-1.25,-0.25) – (-0.75,-0.25); [black,thick] (-
1,0.25) – (-1, -0.75); [black, thick] (-1.25,-0.25)
– (-0.75,-0.25); [color=black!60, fill=white!5, very
thick](-1,0) circle (0.25);

Therefore, using it like this will severely overcount
the number of cases. So how do we make sure we don’t
under count like we did in solution 1, but also not over
count like we’re doing here. Instead, we could look at the
lines a little bit differently. Instead of putting lines, let’s put

2
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filled circles, as shown below.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [color=black!60!, fill=black!60, very thick](-
1,0) circle(0.25); [color=black!60!, fill=black!60,
very thick](-1,0) circle(0.25); [color=black!60!,
fill=black!60, very thick](-1,0) circle(0.25);
[color=black!60!, fill=black!60, very thick](-1,0) cir-
cle(0.25); [color=black!60!, fill=black!60, very
thick](-1,0) circle(0.25);

Let’s try to simulate one of the configurations using
this picture.

[color=black!60!, fill=black!60, very thick](-1,0) cir-
cle(0.25); [color=black!60, fill=white!5, very thick](-
1,0) circle (0.25); [color=black!60, fill=white!5,
very thick](-1,0) circle (0.25); [color=black!60,
fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60!, fill=black!60, very thick](-1,0) cir-
cle(0.25); [color=black!60, fill=white!5, very thick](-
1,0) circle (0.25); [color=black!60, fill=white!5,
very thick](-1,0) circle (0.25); [color=black!60!,
fill=black!60, very thick](-1,0) circle(0.25);

[color=black!60, fill=white!5, very thick](-1,0)
circle (0.25); [color=black!60!, fill=black!60, very thick](-
1,0) circle(0.25); [color=black!60, fill=white!5, very
thick](-1,0) circle (0.25);

[color=black!60!, fill=black!60, very thick](-1,0) cir-
cle(0.25);

In this configuration, the filled in markers separated
the candies into 0-3-2-0-1-0. Therefore, with this method,
we will be able to count everything, including 0’s. So we
now know the correct solution 2.

Solution 2: Let us first draw out our filled circles and
regular circles.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.25);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.25); [color=black!60!, fill=black!60, very thick](-
1,0) circle(0.25); [color=black!60!, fill=black!60,
very thick](-1,0) circle(0.25); [color=black!60!,
fill=black!60, very thick](-1,0) circle(0.25);
[color=black!60!, fill=black!60, very thick](-1,0) cir-
cle(0.25); [color=black!60!, fill=black!60, very
thick](-1,0) circle(0.25);

As we saw above, we just need to find the number of
ways we can arrange the filled circles. As there are 11 total
positions and 5 filled circles, the total number of ways is

(
11
5

)

= 462 . And 462 is indeed the correct answer.

Deriving the Formulas
Now that we have a decent understanding of what stars

and bars is and how to visualize it, let us try to use these
techniques to generalize a formula.

We are going to derive two formulas pertaining to stars
and bars. The first directly follows from example 1.0.1. If we
consider n to be the number of candies and r to be the num-
ber of students Dr. Evil has to distribute them to, we had to
arrange r − 1 filled balls (as it takes r − 1 bars to make r
partitions), in a group of n+ r − 1 balls, leading to the for-
mula:

Theorem 1.2.2 If we need to split n identical items to k dis-
tinguishable groups, where each group can have 0 or more
items, the total number of ways to distribute it is

(
n+k−1
k−1

)
.

Following from that, what if we modified the initial
question slightly, such that now, each student must receive
at least 1 candy.

Example 1.2.1 Dr. Evil has to distribute 6 identical candies
to 3 students, such that each student has at least one candy.
How many ways are there to do this?

It may be intuitive that now, we don’t have to worry
about multiple sticks overlapping on a 0 spot, meaning we
just have to arrange r−1 bars in n−1 spots, simply leading
to the formula:

Theorem 1.2.1 If we have to split n identical items into k
distinguishable groups, where every group has at least one
item, the number of ways to do so is

(
n−1
k−1

)
.

This is essentially what stars and bars is. In the next
section, we’ll look at the concept of partitions recursively,
which sometimes overlaps with stars and bars problems.

3 Partitions Recursively
This section will be targeting case 2, where we’re

dealing with identical balls and identical boxes. As we can
no longer use the Stars and Bars method, a recursive concept
will be presented. As usual, we begin with a problem:

Example 1.3.1 How many ways can 3 positive num-
bers sum to 10 if the order of the addends doesn’t matter?
By order of the addends doesn’t matter, it means 3 + 3 + 4
is the same as 4 + 3 + 3.

We’ll start by drawing our example in the problem
4 + 3 + 3 into a diagram.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.2); [color=black!60, fill=white!5, very thick](-1,0)
circle (0.2); [color=black!60, fill=white!5, very thick](-3.1,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-3.1,-0.5) circle (0.2); [color=black!60,
fill=white!5, very thick](-3.1,-0.5) circle (0.2);
[color=black!60, fill=white!5, very thick](-4.5,-1) circle
(0.2); [color=black!60, fill=white!5, very thick](-4.5,-

3

1) circle (0.2); [color=black!60, fill=white!5, very
thick](-4.5,-1) circle (0.2);

Thinking about this diagram recursively means to re-
duce the diagram to a simpler one which we also have con-
trol over. Here, this looks like creating a one-to-one corre-
spondence, a term which means to make a change to the
scenario, while keeping the answer constant.

We’ll draw a line through the diagram, which signals
removing the circles the line intersects.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle
(0.2); [color=black!60, fill=white!5, very thick](-1,0)
circle (0.2); [color=black!60, fill=white!5, very
thick](-1,0) circle (0.2); [color=black!60, fill=white!5, very
thick](-3.1,-0.5) circle (0.2); [color=black!60,
fill=white!5, very thick](-3.1,-0.5) circle (0.2);
[color=black!60, fill=white!5, very thick](-3.1,-0.5)
circle (0.2); [color=black!60, fill=white!5, very thick](-
4.5,-1) circle (0.2); [color=black!60, fill=white!5,
very thick](-4.5,-1) circle (0.2); [color=black!60,
fill=white!5, very thick](-4.5,-1) circle (0.2); [black, very
thick] (-5.9, -1) – (-5.9,0);

Let’s think about what we can do with this. If we find
the number of ways three numbers x1+x2+x3 = 10, and if
we let x′

i = xi+1, then the number of solutions to x′
1+x′

2+
x′
3 = 7, is the same as the number of solutions to the prior

equation. This is because every solution to x′
1+x′

2+x′
3 = 7

is just a solution to x1 + x2 + x3 = 10 if you add 1 to each
of the addends.

So we’ve reduced the number 10 to a much simpler
number without changing the actual scenario.

If we let p(n, k) = the number of ways k positive
numbers can sum to n, we unfortunately cannot generalize
the above to say p(n, k) = p(n− k, k)...this can be seen by
drawing the Young Diagram with a different configuration.

This time, let us draw the Young Diagram with a dif-
ferent configuration that sums to 10. Specifically, 6 + 3+ 1.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-4.5,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-4.5,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-4.5,-0.5) circle (0.2); [color=black!60, fill=white!5,
very thick](-5.9,-1) circle (0.2);

Now, you may notice that if we were to draw a line
to try to do the 1 to 1 correspondence again, k would be
reduced as the smallest number is 1. This is shown in the di-
agram below.[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-4.5,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-4.5,-

0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-4.5,-0.5) circle (0.2); [color=black!60, fill=white!5,
very thick](-5.9,-1) circle (0.2); [black, very thick] (-5.9,-1)
– (-5.9,0);

Therefore, we we wouldn’t be able to subtract another
3 from n as that guarantees that each partition is at least 2.
Therefore, we can try and cover the cases where a partition
is 1 in a separate case.

Let us try removing that lone 1 in the bottom left
corner.[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-4.5,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-4.5,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-4.5,-0.5) circle (0.2);

Now, we have a situation where we have two numbers
sum to 9. As this is the case where at least one of the num-
bers is 1, we can just put a 1 as the third number. Therefore,
this derivation works!

Putting it in the p(n, k) notation we used before, we
get this case is p(n−1, k−1) as we’re losing one group and
one number. We can put this together with our p(n − k, k),
to develop our first formula.
Theorem 1.3.1 Given p(n, k) is the number of ways k pos-
itive numbers can sum up to n, where the order doesn’t mat-
ter, p(n, k) = p(n− k, k) + p(n− 1, k − 1).

Using this, let’s solve example 1.3.1.
Solution 2: In this problem, we want to find p(10, 3). Using
what we learned previously, p(10, 3) = p(7, 3) + p(9, 2) =
p(4, 3) + p(6, 2) + p(9, 2). p(4, 3) = 1, as the only way is
1+1+2. p(6, 2) = 3, as the only ways are 5+1, 4+2, and
3 + 3. p(9, 2) = 4, as the only ways are 8 + 1, 7 + 2, 6 + 3,
5 + 4. Summing these values up, we get 4 + 3 + 1 = 8 .

But now, what if we change one word in the problem
statement?
Example 1.3.2 How many ways can 3 positive distinct
numbers sum to 10 if the order of the addends doesn’t mat-
ter? By order of the addends doesn’t matter, it means 3+5+2
is the same as 5 + 3 + 2.

Our initial formula unfortunately accounts for all
cases, not just distinct cases, meaning we’ll have to derive
something else. As should be expected by now, let’s start
out by drawing the Young Diagram for 5 + 3 + 2.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-3.8,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-3.8,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-3.8,-0.5) circle (0.2); [color=black!60, fill=white!5,
very thick](-5.2,-1) circle (0.2); [color=black!60,
fill=white!5, very thick](-5.2,-1) circle (0.2);
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Once again, we can make a 1 to 1 correspon-
dence. If every number is distinct and if we subtract
one from each of the numbers, then they’ll stay distinct.
Therefore, we can draw a line through the first column
like we did when we were deriving the p(n, k) formula.
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-3.8,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-3.8,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-3.8,-0.5) circle (0.2); [color=black!60, fill=white!5,
very thick](-5.2,-1) circle (0.2); [color=black!60,
fill=white!5, very thick](-5.2,-1) circle (0.2);

[black, very thick] (-5.9,-1) – (-5.9,0);
Let us say q(n, k) = the number of ways k distinct

numbers can sum to n. With what we did above, we think
q(n, k) = q(n − k, k), as there are k fewer balls. We can
now start answering the example!

As you’re probably suspecting, we have to account for
the case where one of the numbers is 1. As expected, we will
draw our Young Diagram again, this time with 6 + 3 + 1.
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-4.5,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-4.5,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-4.5,-0.5) circle (0.2); [color=black!60, fill=white!5,
very thick](-5.9,-1) circle (0.2);

Our first instinct would be to do what we did with
p(n, k) and remove that singular ball in the bottom left cor-
ner. Let’s take it out from our diagram.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-4.5,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-4.5,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-4.5,-0.5) circle (0.2);

Although it seems like we can do our 1 to 1 corre-
spondence with this case in this manner, we are actually over
counting. That is because in any of the two remaining rows,
there can be one ball. Then, when we add a third group of
one ball, we’ll have two groups of one ball, which means that
they aren’t distinct. Therefore, we have to think of some-
thing else to do.

To come up with a correspondence that actually satis-
fies the case with one group having a 1, we can try to remove
the entire column just like we did with the 1st case.

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);

[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-4.5,-0.5) circle
(0.2); [color=black!60, fill=white!5, very thick](-4.5,-
0.5) circle (0.2); [color=black!60, fill=white!5, very
thick](-4.5,-0.5) circle (0.2); [color=black!60, fill=white!5,
very thick](-5.9,-1) circle (0.2); [black, very thick] (-5.9,-1)
– (-5.9,0);

This actually works! Because we are going to add 1 to
each of the first two rows, neither of them could be 1. So,
we are sure they’re distinct! Using our q(n, k) notation, this
yields us q(n − k, k − 1) as we are losing one group when
we take out one column, and we have k less balls.

We can add this to our initial q(n− k, k) to obtain our
second formula!
Theorem 1.3.2 If q(n, k) is the number of ways k distinct
positive numbers sum to n, q(n, k) = q(n − k, k) + q(n −
k, k − 1).

With this in mind, the solution to the example is rudi-
mentary:
Solution to Example 1.3.2: We need to find q(10, 3). Us-
ing the formula we derived earlier, q(10, 3) = q(10−3, 3)+
q(10 − 3, 3 − 1) = q(7, 3) + q(7, 2) = q(4, 3) + q(4, 2) +
q(7, 2). q(4, 3) is obviously 0. q(4, 2) = 1, as the only con-
figuration that work are 3+ 1. q(7, 2) = 3, as the configura-
tions that work are 6 + 1, 5 + 2, and 4 + 3. Summing these
values up, 0 + 1 + 3 = 4 .

As expected, we will be deriving our final formula us-
ing a problem as well.
Example 1.3.3 How many ways are there for two or more
positive integers to sum to 10, such that the order matters?
(for example, 6 + 3 + 1 is different from 1 + 3 + 6).

Let us first draw 10 balls, each representing one, in a
row.

[color=black!60, fill=white!5, very thick](-1,0) circle
(0.2); [color=black!60, fill=white!5, very thick](-
1,0) circle (0.2); [color=black!60, fill=white!5,
very thick](-1,0) circle (0.2); [color=black!60,
fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);
[color=black!60, fill=white!5, very thick](-1,0) circle (0.2);

I will be using two different symbols to represent dif-
ferent things: + to separate the addends and ∗ to combine
the balls within an addend.

The diagram below simulates how we’re interpreting
the symbols.

[color=black!60, fill=white!5, very thick](-1,0) circle
(0.2);

+ [color=black!60, fill=white!5, very thick](-1,0)
circle (0.2);

∗ [color=black!60, fill=white!5, very thick](-1,0)
circle (0.2);

5

The simulation above shows 1 + 2, as the ∗ combines
1 and 1.

The example above perhaps gives you an idea of what
we can do to solve this problem. Between any two balls, we
can either put a + or ∗, which means there are 2 choices
for every gap. As there are 10 − 1 = 9 gaps, we have 29

possibilities. However, we cannot combine all of them as the
question asks for at least two positive integers. Therefore,
our answer is 29−1 = 511 . This is the solution to example
1.3.3!

Hopefully, you will be able to generalize this to n
numbers to obtain our third and final formula.
Theorem 1.3.3 If we want to find the number of ways two
or more positive numbers sum to n, where the order matters,
the number of ways is 2n−1 − 1.

4 Conclusion
This paper is an introduction to the world of partitions

and aims to provide the fundamental knowledge necessary
for further exploration. The concepts and formulas presented
here are derived using rudimentary logic and mathematics.
Therefore, you are encouraged to extend the presented con-
cepts to try deriving more formulas on your own, especially
for the last two types of partitions.
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Abstract

Options traders often use the Black-Scholes model or some
extension of it to estimate the value of options. The Black-
Scholes model employs different mathematical concepts in-
cluding partial differential equations, stochastic calculus, and
probability theory to estimate the value of a European call op-
tion. Despite its limitations, the Black-Scholes model remains
largely unrivaled in terms of mathematical models estimating
the value of options.
In this paper, I will explain the intuition behind the Black-
Scholes formula. In my extension, I will analyze the volatility
of the SPDR S&P 500 ETF Trust (SPY), an ETF that closely
represents the US equity market. I plan to calculate the histor-
ical volatility of SPY and compare it with the implied volatil-
ity of SPY at different exercise prices. Finally, I will highlight
a few limitations of the model that may have affected my cal-
culations relating to the implied volatility of SPY shares.
Keywords: Black-Scholes model, partial differential equa-
tions, stock market, total derivative, volatility

1 The Black-Scholes Model
1.1 History and Background

Developed in 1973 by Fischer Black, Myron Scholes, and
Robert C. Merton, the Black-Scholes model was created to
calculate the value of a European call option. The creation
of the model led to a significant increase in options trad-
ing volume and earned Scholes and Merton the Nobel Prize
in Economics. To understand the Black-Scholes model, it
is first important to understand what European options are.
Options are financial derivatives that allow someone to buy
or sell shares at a predetermined price on a specific date.
European options differ from American options in the way
that traders of European options are only allowed to exer-
cise their options on the option expiry date while traders of
American options can exercise their options anytime before
the expiry date, therefore simplifying the mathematics re-
quired to estimate a value for European call options. Here is
an example of a European call option to provide the reader
with a better understanding of it:

Let’s say Bob buys a European call option from Dan for
$10. The call option states that in two days, Bob has the
option to buy one Nestle share from Dan for $200. Two days
later, one Nestle share now costs $300. Bob exercises his

option, buys one Nestle share from Dan for $200, and sells
that share for $300, making a $90 profit since he had to pay
Dan $10 in the beginning.

The Black-Scholes model, if employed correctly, helps a
trader accurately value options, enabling the trader to spot
arbitrage opportunities in the market to generate profit.

1.2 The Model
The Black-Scholes Model can be broken down as follows:

C = N(d1)St −N(d2)Ke−rt

where d1 =
ln St

K + (r + σ2

2 )t

σ
√
t

and d2 =
ln St

K + (r − σ2

2 )t

σ
√
t

C = call option value
S = share price of underlying stock
K = exercise price
r = risk-free interest rate
N(d) = cumulative distribution function for normal distri-
bution
t = time to expiration of option
σ = volatility/standard deviation of lognormal function

In layman’s terms, a call option is valued by deducting
the share price (S) by the discounted present value (e−rt)
of the exercise price (K), both of which are weighted by
a probability factor N(d1) and N(d2) respectively. We can
illustrate this more clearly at call option maturity when the
value of the call option is essentially the share price minus
the exercise price.
N(d1) and N(d2) are more difficult to understand but in-

tuitively N(d1) is the risk-adjusted probability that the op-
tion will not expire in-the-money while N(d2) is the risk-
adjusted probability that the option will expire in-the-money.

1.3 Present Value Adjustment to Call Option
Price

We need to discount the exercise price to calculate the
present value of the exercise price. Since the option exercise
is at a future date, we need to take into account the value of
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the option now versus the value at the time of expiration. We
can use the formula for continuous compounding interest,
e−rt, where r is the risk-free interest rate and t is the time to
maturity to discount the call option exercise price.

NPV of call option price = Ke−rt

1.4 Highlights of Mathematical Derivation
The mathematical derivation of the Black-Scholes model

is very complex, combining different branches of calculus
including partial differential equations, stochastic calculus,
martingales, and Itô’s lemma. We will examine some of the
concepts used in the derivation of the Black-Scholes model
below.

The Black-Scholes model assumes that share prices fol-
low a geometric Brownian motion with mean growth rate µ,
volatility σ and W is a Wiener process or Brownian motion.
Brownian motion is a random process and is widely used to
model percentage changes in share prices.

dS

S
= µdt+ σdW

We apply a branch of calculus called Itô’s lemma to cal-
culate the payoff of an option V as follows:

dV = (µS − ∂V

∂S
+

∂V

∂t
+

σ2S2

2

∂2V

∂S2
dt+ σS

∂V

∂S
dW )

*Note that ∂f/∂x represents the partial derivative of f with
respect to x.

By using a concept called delta-hedge portfolio, we ef-
fectively short one option and long shares. This allows us
to effectively remove dW from the equation, thus neutral-
izing the effect of the Brownian motion. As the portfolio is
now fully-hedged, the appropriate return is the risk-free rate
of interest r. This allows us to arrive at the Black-Scholes
partial differential equation.

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

1.5 N(d1) and N(d2)

We will explain some key intuition behind N(d1) and
N(d2).

C = N(d1)St −N(d2)Ke−rt

where d1 =
ln St

K + (r + σ2

2 )t

σ
√
t

and d2 =
ln St

K + (r − σ2

2 )t

σ
√
t

N(d) is the cumulative distribution function (0% to
100%) which is used to calculate probabilities under a nor-
mal distribution function. N(d2) can be thought of as a risk-
adjusted probability that the future stock price will be above
the exercise price at expiration. N(d1) is thought of as the

risk-adjusted probability that the option will not be exer-
cised. It is also the option delta or the sensitivity of the op-
tion price to changes in the share price of the underlying
stock.

Greater volatility means that the call option has greater
value. Greater volatility increases the value of d1 as the
volatility in the numerator is squared over the volatility in
the denominator. This leads to a higher probability produced
by the normal distribution function and therefore a greater
call option value. Greater volatility decreases the value of
d2 as the volatility in the numerator is squared and negative
over the volatility in the denominator. A lower d2 leads to a
lower probability produced by the normal distribution func-
tion and a corresponding higher call option value.

Greater time to expiration means that the call option has
greater value. Greater time to expiration affect d1 and d2
similarly. However, as the variable t increases, the function
e−t tends towards zero, decreasing the negative component
of the equation, therefore leading to a greater call option
value.

A higher share price over the exercise price will lead to
a higher call option value. Similarly, a higher risk-free rate
will result in a higher call option value.

2 Comparing Historical Calculated Volatility
to Implied Volatility

I wanted to investigate how similar the historical calcu-
lated volatility was to the implied volatility of call options
at different exercise prices of the SPY ETF in the month of
September 2022 using the Black-Scholes model.

2.1 Calculation of Historical Volatility
The equation to calculate historical/annualized volatility

is:

HV = SD(
∑
x

= 1d ln(
px

px−1
))×

√
d− 1

HV = historical volatility
SD = standard distribution model
d = number of days in the dataset
P (d) = share price on that day d

I am calculating the historical volatility of the S&P500
ETF index (SPY), a highly liquid and deeply-traded ETF, us-
ing the closing prices of the trading days of the last year-to-
date. There were 252 trading days from the year-to-date of
21 May 2022. Historical volatility is considered as the stan-
dard deviation of the sum of the logarithmic returns. First, I
used the equation ln(px/px−1) to determine the logarithmic
returns for every day excluding the first day as there are no
values for px−1. Next, I entered the result into the STDEV()
standard deviation function in Google Sheets to calculate the
standard deviation of all the logarithmic returns. Finally, I
multiplied the historical volatility by the square root of the
number of trading days in my dataset, since volatility is the
square root of the variance, to calculate annualized volatil-
ity. My result of annualized volatility was 0.1784475146 or
around 17.8448%.

2

*Note that I only included the first ten days of my dataset

2.2 Calculation of Implied Volatility using
Black-Scholes Model

Using the Black-Scholes model and the market call option
value on Yahoo Finance, I estimated the variables of time
to expiration of option and risk-free interest rate to reverse
engineer the implied volatilities for the month of September
2022.

I estimated the time to expiration of the option by us-
ing the NETWORKDAYS() function in Google Sheets that
computed the number of trading days between today’s date,
21 May 2022, and the date that the options would expire,
30 September 2022. I divided that time by the total number
of trading days in a year (253 days) to calculate the time to
expiration in percentage form.

I estimated the risk-free interest rate for September 2022.
I divided the number of trading days calculated above by 30
days, roughly the number of days in a month, to calculate the
number of months until the option would expire, obtaining
the result of 4.4 months. I estimated the risk-free interest
rate by interpolating the 3-month and 6-month US treasury
interest rates from the US Federal Reserve website of 1.03%
and 1.51% respectively to calculate the US treasury interest
rate in 4.4 months when the European call options would
expire.

With all my values computed or given, I downloaded and
used the GoalSeek function on Google Sheets which is sim-
ilar to the .solve() function on the TI-Nspire calculator. I en-
tered the values and began computing the implied volatil-
ities— that is, the volatilities required to obtain the stated
call option values. Note that I had to repeatedly change the
exercise price as my research was with regards to the trends
of volatility due to exercise price.

The detailed spreadsheet containing my calculations is in the
Google Sheet link below:
https://docs.google.com/spreadsheets/d/1 8CwUfFklZNCd
6nyynn6iTug1TH0T3ISeTITq8oZuRI/edit#gid=0

2.3 Observations & Analysis of “Trends of
Volatility due to Exercise Price” Graph

There are several significant takeaways from the “trends
of volatility due to exercise price” graph.

The implied volatility stays above the annualized volatil-
ity for all the listed exercise prices. Implied volatility is
based upon present volatility while annualized volatility is
based upon the volatility of the past year-to-date. Therefore,
this observation can be explained by the high volatility of
the American market for the last three months after the Rus-
sian invasion of Ukraine in February. The lower annualized
volatility is an average of a significantly larger dataset and
therefore is less affected by the recent trend. In addition, the
implied volatility at different exercise prices does not fol-
low a clear trend throughout, though it seems to be largely
decreasing after its initial maximum at around the $390 ex-
ercise price.

Different exercise prices change the volatility. Based on
further research from Investopedia, there is a concept called
volatility skew where in-the-money options have higher im-
plied volatility vs out-of-the-money call options. Although
my graph looks a little skewed, I suspect that the deviation
is from the current market volatility.

3 Limitations
3.1 American vs European Options

One limitation to my calculations of the implied volatility
of the SPY index is that the S&P500 ETF index (SPY) is an
American option, not a European option. This is significant
because the mathematics behind the Black-Scholes model is
geared towards the more straightforward European option.

3
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While European options can only be exercised on the day of
expiry, American options can be exercised on any day be-
fore the option expires. I researched American option pric-
ing models and found that the Bjerksund-Stensland model
is a model often used to price American options, but found
that the math is too complex for this discussion.

3.2 Fat-tails
Another limitation is that the Black-Scholes model has a

significant flaw that may have impacted our estimation. The
Black-Scholes model assumes that the distribution of the op-
tion value is lognormal, but this is not necessarily true. The
model fails to take into account the possibility of fat tails
or kurtosis and Black Swans, a sudden largely unforeseen
change in market conditions such as the 2007 financial cri-
sis, meaning that a sudden change in how the option prices
are distributed can have a drastic impact on the accuracy of
the option pricing. This is extremely significant as it could
cause the user of the Black-Scholes model to highly under-
value or overvalue certain options, causing the user signifi-
cant financial loss.

3.3 Historical Volatility vs Current Volatility
Another limitation is that the annualized volatility that I

calculated is evidently not a good predictor of the current
implied volatility according to my graph. The reason behind
the difference between the annualized and implied volatility
can be attributed to the highly volatile market conditions that
have been caused by the recent Federal Reserve interest rate
hikes and the uncertainty over the Russia-Ukraine war. Since
the implied volatility, which is based on the last few months,
is greater than the annualized volatility, which is based on
the last year-to-date, it is evident that annualized volatility
cannot be relied upon in the increasingly-volatile market of
today.

4 Conclusion
In conclusion, through my research, I found that the

Black-Scholes model is primarily comprised of a present
value adjustment equation taking into account the probabili-
ties d1 and d2, the probability that the option will not expire-
in-the-money and the probability that the option will expire-
in-the-money respectively, plotted over a normal distribution
graph N(d). Through my extension investigating the rela-
tionship between annualized volatility and implied volatility
of the SPY ETF over the month of September 2022, I found
that the implied volatility was significantly greater than the
annualized volatility which can be attributed to the greater
volatility in the past few months due to the uncertainty sur-
rounding real-world events. Annualized volatility may not
be a good predictor of current and future volatility.

Through my research of financial derivatives, I noticed
that it is highly difficult to derive equations that adequately
represent the uncertainty in financial markets. It is evident
that even the Black-Scholes model, which won its creators
the Nobel Prize in Economics, has several significant lim-
itations. For example, the model relies on an assumption
that option price is represented by lognormal distribution

and therefore does not account for the option price follow-
ing other types of distribution models like fat-tail or kurtosis
distribution.
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Abstract

Born in 1845, German mathematician Georg Cantor was a
pioneer in developing set theory—in specific, infinite set the-
ory. Infinite set theory is a branch of mathematics that focuses
on studying the behavior of infinite collections of numbers.
In this paper, we will establish that infinity is a concept and
examine the conclusions Cantor drew regarding infinite sets,
relating to countability and cardinality. Please note that this
paper will not be describing proofs in a mathematically rigor-
ous manner, but will rather be explaining in a more easy-to-
understand manner.’
Keywords: set theory, infinity, Cantor’s diagonalization argu-
ment, cardinality, bijective, Cantor’s theorem

1 Infinity is a Concept
Infinity only exists as a concept and has fundamental

flaws when applied as a number. When we later delve
into infinite sets, it is important to regard that infinity as a
concept as well. First, let’s prove infinity can’t be a number.

Imagine a semi-circle with radius 1. The circumference of
this semi-circle is π · 1 = π.

Figure 1: A single semicricle graphed on the x-y plane

Now imagine two semi-circles with radius 1
2 . The total

circumference of these two semi-circles is still π · 12+π · 12 =
π.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 2: Two tangent semicircles with radius 1
2 lined up

Four semi-circles with radius 1
4? The total circumference

will still be
π · 1

4 + π · 1
4 + π · 1

4 + π · 1
4 = π

Figure 3: Four semicircles with radius 1
4

Eight semi-circles with radius 1
8? Sixteen semi-circles

with radius 1
16? As the number of semi-circles increases, the

total circumference remains the same at π. Yet, an infinite
number of semi-circles each with an infinitely small radius
would resemble a line instead. A line which is 2 units long.

Figure 4: An 2 unit long line on the x− y plane

Therefore, when infinity is used as a number, π is equiv-

alent to 2. Since π cannot be equivalent to 2, therefore it
follows that infinity cannot be used as a number. The limit
as the number of semi-circles approaches infinity does ap-
proach 2, but, as we learn in calculus, the limit can often be
different from the actual answer.

Figure 5: A graph of f(x) = x2, for x ̸= 3

For example, in the above graph, f(x) = x2, for x ̸= 1,
and f(x) = 3 for x = 1. Therefore, limx→1 f(x) = 1,
while f(1) = 3.Therefore, the limit is different from
the actual answer when the graph has a jump or point
discontinuity.

2 Countably and Uncountably Infinite Sets
To determine whether an infinite set is countable or un-

countable, we can use bijection, a method developed by
Cantor. A bijection is a one-to-one correspondence. If the
infinite set can correspond one-to-one to the natural set, the
infinite set is countable. If it cannot correspond one-to-one
to the natural set, the infinite set is uncountable. Please note
that the natural set of numbers is {1, 2, 3, 4, 5, 6, 7, . . .}.
We will later show that any subset of a countably infinite
set, such as the natural set, and an uncountably infinite set
is also countably infinite and uncountably infinite, respec-
tively. Here, we will assess the countability of a few infinite
sets and explain our reasoning.

2.1 Countability of Even Integer Set
Does the even integer set correspond one-to-one to the

natural set? Let’s see.
Even Integers 2 4 6 8

Natural Numbers 1 2 3 4

Yes, it does! Every natural number corresponds to exactly
one number in the even integer set.

2.2 Countability of Integer Set
Does the integer set correspond one-to-one to the natural

set? Let’s see.
Integers 0 1 -1 2

Natural Numbers 1 2 3 4

Yes, it does! To correspond every integer to a natural num-
ber, we have to start with zero and then go to the positive and
negative of each following integer. By working to both pos-
itive and negative infinity, we can correspond every natural
number to exactly one number in the integer set.

2.3 Countability of the Positive Rational
Numbers Set

Does the positive rational number set correspond one-to-
one to the natural set? Let’s see.

Rational Number 1 2 1
3

1
2

Natural Numbers 1 2 3 4

Figure 6: All rational numbers as fractions

Yes, it does! Since all rational numbers can be represented
as a fraction, we can correspond every number in the posi-
tive rational number set to a number in the natural set by
employing a diagonal approach shown above. The blue and
pink numbers represent the denominator and numerator of
the number respectively. All repeated numbers (e.g 1

1 ,
2
2 ,

3
3 )

are skipped. No other approach would work as we cannot
go to infinity and come back (e.g 1, 1

2 , 1
3 , 1

4 , 2, 2
3 ,

2
5 , . . . ).

Please also note that by proving the countability of the posi-
tive rational numbers set, we can easily prove the countabil-
ity of the rational numbers set as a whole by adding zero in
front and adding a negative number after each positive num-
ber— similar to what we did for the integer number set. All
subsets of countably infinite sets must be countably infinite
themselves because they are either finite or are made up of
all the numbers in an already proven set and therefore share
the same characteristics.

2.4 Countability of Real Number Set
Does the real number set correspond one-to-one to the

natural set? Let’s think about it.

Abstract
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No, it doesn’t. There is no way to establish one-to-one
correspondence between the real number set and the natural
set. Although it may initially seem like the infinity between
a real number set from [0, 1] should be the same infinity in
a positive integer set, this conclusion fails to consider in-
finitely repeating numbers like 1

3 . The number 1
3 in the real

number set is not represented in the positive integer set as it
requires infinite decimals that do not exist in integers.
A clearer proof that the real number set is uncountable can
be shown by Cantor’s diagonal argument. Cantor’s diago-
nal argument proves that a real number set from [0, 1] is
uncountable, therefore proving that all real number sets are
uncountable. Using proof by contradiction, first assume that
the infinite real number set is countable.

Figure 7: Diagram showing Cantor’s diagonal argument

Since we assume the infinite real number set is count-
able, all real numbers should exist within the infinite real
number set. The picture above is an infinite list of infinite
digits. Look at the red-highlighted numbers and then look
at the blue-highlighted numbers at the bottom. If the red-
highlighted number is 1, the blue-highlighted number in its
column becomes 0. If the red-highlighted number is 0, the
blue-highlighted number in its column becomes 1. The blue-
highlighted numbers at the bottom are different from any
number in the infinite list. They are different from the num-
ber in the first row by the number in the first column, differ-
ent from the number in the second row by the number in the
second column, different from the number in the third row
by the number in the third column, and so on. Therefore, the
blue-highlighted numbers at the bottom are different from
all the numbers in the infinite list and yet should exist as a
number in the infinite list. Such a contradiction proves that

the real numbers are indeed uncountable.
Please note that the change from 0 to 1 is completely ar-

bitrary. As long as you are somehow changing each of the
red-highlighted numbers, you can prove Cantor’s diagonal
argument.

2.5 Countability of Irrational Number Set
Does the irrational number set correspond one-to-one to

the natural set? Let’s see.
No, it doesn’t. Since the irrational number set is infinite,

we can prove that it is uncountable using the same logic be-
hind Cantor’s diagonalization argument. Please note that we
cannot state that the irrational number set is uncountable be-
cause it is a subset of the real number set. Otherwise, we
would be able to state a finite, definitely countable set would
be uncountable. Instead, we can state that the real number set
is uncountable because the irrational number set is as well.
For uncountable sets, the subset determines the overall set’s
countability, not the other way around.

3 Cardinality of Infinite Sets
The cardinality is the size of a set. Here, we will be de-

termining the cardinality of the infinite sets previously dis-
cussed.

3.1 Cardinality Definitions
Definition 1: A has the same cardinality as B if there is a
bijective function between the two.

Definition 2: A has cardinality less than B if there is
an injective function from A to B but no bijective function.
Note that injective functions are one-to-one functions where
B may have more points that are not mapped by A.

Please also note that a bijective function is a function
that is both injective and surjective. Surjective functions are
one-to-one functions where A may have more points that
are not mapped by B.

Definition 1 - Cardinality of Countably Infinite Sets:
Two sets have the same cardinality if there is a bijection
between the two. Since countably infinite sets must have a
bijection or one-to-one correspondence to the natural set to
be countable, it follows that all countably infinite sets have
the same cardinality as the natural set and each other.

Definition 2 - Cardinality of Uncountably Infinite
Sets: The cardinality of uncountably infinite sets is much
more interesting. Countably infinite sets have cardinality
less than uncountably infinite sets. There is an injective
function from the natural set to the real number set because
the natural set is a subset in the real number set. The real
number set has integers, of which the positive belong to
the natural set, and decimals. There is no bijective function
from one to the other set because the natural set is countable
and the real number set is uncountable.

4 Conclusion
In conclusion, this paper has provided a clear introduction

to countably and uncountably infinite sets. We began by ex-

plaining why infinity only exists as a concept and not a num-
ber. Next, we explained how one might determine whether
infinite sets are countable or uncountable using bijection, a
method devised by Georg Cantor. Finally, we examined the
cardinality of countably and uncountably infinite sets.

References
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Abstract
Chaos theory is a branch of mathematics that deals with the
study of dynamic systems and their seemingly random behav-
ior. In this research paper, we aim to provide a comprehensive
overview of chaos theory, covering its key concepts and ex-
amples, as well as its applications in various fields. We be-
gin by discussing the history and development of chaos the-
ory, including the pioneering work of figures such as Henri
Poincaré and Edward Lorenz. We then delve into some ex-
amples of chaos theory, such as the double pendulum and
Newton’s three-body problem. Finally, we explore some of
the real-world applications of chaos theory, including its use
in predicting weather patterns and understanding biological
systems. Overall, this research paper aims to provide a com-
prehensive and accessible introduction to chaos theory for
students and researchers interested in this fascinating and im-
portant field.
Keywords: Butterfly effect, Double pendulum, Newton’s
three-body problem

1 Introduction and History
Chaos theory is defined as the branch of mathematics that

deals with complex systems whose behavior is highly sen-
sitive to slight changes in initial conditions, so that small
alterations can give rise to strikingly great consequences.
Chaos theory has its roots in the work of Henri Poincaré,
a French mathematician who studied the stability of the so-
lar system in the late 19th century. Pondering upon New-
ton’s three-body problem, Poincaré discovered that the or-
bits of celestial bodies were not as predictable as previously
thought, and that small variations in initial conditions could
lead to significant differences in the long-term behavior of
the system.

However, it was not until the 1960s that chaos theory was
fully developed and recognized as a distinct field of mathe-
matics. The development of chaos theory can be attributed
to Edward Lorenz, a mathematician and meteorologist at the
Massachusetts Institute of Technology. Lorenz was study-
ing the behavior of weather patterns using computer simu-
lations, when in 1961 he inadvertently discovered an inter-
esting phenomenon. He was running simulations of twelve
weather variables using a computer model, but to save time,
he started halfway through a previous simulation. To his sur-
prise, he found that the results were completely different. He

then realized that the numbers he used this time were trun-
cated to three decimal places, while the previous simulation
used six. This small, seemingly insignificant difference was
amplified, resulting in a completely different outcome. This
phenomenon, coined the “butterfly effect” by Lorenz (based
on the metaphor that a butterfly flapping its wings in Brazil
could cause a tornado in Texas), became the cornerstone of
chaos theory.

2 Examples
2.1 The Double Pendulum

One of the most notable examples of chaos theory in
action is the double pendulum. The name is rather self-
explanatory; it is essentially two pendulums connected to
each other which can be spun along an axis. The double pen-
dulum is quite unique, solely because of its high sensitivity
to initial conditions—a common trend within chaos theory.

Figure 2.1.1: A simulation of three double pendulums drop-
ping at the same time, with slightly different initial condi-
tions. (Source: Wikimedia Commons)

As seen above, dropping the pendulum from 100.00 de-
grees, 100.01 degrees, and 99.9 degrees would look similar
at first, but their paths would diverge drastically over time. In
addition to this, the slight differences of air pressure, grav-
ity, temperature, and other miniscule differences would also
have an impact; in fact, it is said the double pendulum is so
sensitive that the gravitational attraction of a nearby human
could affect its course.

2.2 Newton’s Three-Body Problem
Another well-known example of Newton’s three-body

problem in orbital mechanics. The discovery of this hypo-
thetical problem dates back to 1687, where namesake as-
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Figure 2.2.1: A subfigure

.5

Figure 2.2.2: A subfigure

tronomer Issac Newton questioned whether long-term sta-
bility is possible—particularly the system comprising the
Earth, the Sun, and the Moon—in his book Principia Math-
ematica.

The problem consists of three celestial objects moving
around each other, and the goal is to find a closed-form so-
lution to predict the course of these three objects. However,
the smallest discrepancies, such as a slight difference of dis-
tance, can lead to chaos and randomness. Interestingly, there
are a few special-case solutions to the three-body problem,
such as the figure-eight solution (where the three bodies or-
bit each other in a figure-eight) or the elastic solution (where
the three bodies orbit each other elastically).

Finally, a more theoretical but interesting example of
chaos theory lies in the realm of a popular concept fantasized
for centuries: time travel. Theoretically, if one were able to
travel back in time and make a small alteration, it could re-
sult in significant changes in the future. For instance, imag-
ine going back in time and striking up a conversation with
a passerby. This person was on their way to a diner across
the street, and this short conversation causes a delay of ten
seconds. Because of this delay, as the person is crossing the
street, he is hit by a car that would have missed him if it
wasn’t for the delay caused by the conversation. This person
turns out to be Robert Oppenheimer, the man who would
later go on to create the atomic bomb during World War II.
As a result, the United States falls behind while the Axis de-
velops their own atomic bomb and defeats the Allies. In this
example, a seemingly insignificant conversation has drasti-
cally changed the course of history. However, one does not
have to worry about this as time travel is not a reality. . . yet.

3 Applications
The applications of chaos theory are not limited to rather

mundane scenarios of pendulums or butterflies; rather, these
applications are far-reaching and play a part in meteorology,
biology, social science, and even business.

As mentioned before with Lorenz, chaos theory is also
used in predicting weather conditions, where observations
that are self-similar in regions help reduce the uncertainty
posed by the initial weather conditions, thereby reducing
errors. This is why we can predict the weather many days
in advance with confidence—a huge improvement from be-
fore.

In biology, chaos theory has played a part in population
dynamics, which involves understanding how populations of
organisms change over time. This can include factors such as
birth and death rates, migration, and other influences. Chaos
theory has been used to model the dynamics of populations
of animals, plants, and other organisms, and has helped to
explain how small changes in initial conditions can lead to
large changes in population size over time. In fact, chaos
theory has even been applied by biologists to understand and
explain the spread of the COVID-19 virus.

Chaos theory has even been applied to concepts in the
social sciences ranging from politics to psychology. Specif-
ically, for politics, chaos theory has been used to study the
factors that contribute to political instability, such as eco-
nomic crises, social unrest, and changes in leadership. Re-
searchers have used chaotic models to identify the condi-
tions that are most likely to lead to regime change and to
predict the likelihood of such changes occurring in different
countries. For psychology, it has been used to study the fac-
tors that influence decision-making in social groups, such as
the role of leadership and group dynamics. For example, re-
searchers have used chaotic models to study how group size
and composition can impact decision-making and to identify
the conditions that are most likely to lead to group consen-
sus. Chaos theory has also been applied in mental health:
it is used to study the dynamics of mental health disorders,
such as depression and bipolar disorder. Researchers have
used chaotic models to develop predictions about the like-
lihood of relapse in patients and to identify the factors that
contribute to the emergence of these disorders.

Finally, in terms of business and the stock market, chaos
theory can explain to investors why healthy financial mar-
kets can suffer crashes and shocks. By using chaotic dynam-
ics, investors can analyze the movements of prices and iden-
tify patterns that may not be immediately apparent.

4 Conclusion
In conclusion, chaos theory is a fascinating and complex

field of study that has revolutionized our understanding of
the world around us. First discovered by meteorologist Ed-
ward Lorenz, it deals with the behavior of dynamic systems
that are highly sensitive to initial conditions, often referred
to as the butterfly effect. Some examples of chaos theory
include the double pendulum, Newton’s three-body prob-
lem, and even time travel, while the real-world applications
of chaos theory include predicting weather patterns, under-

2

standing biological systems, and modeling stock markets.
Overall, chaos theory offers a new perspective on under-
standing complex systems and phenomena that were previ-
ously thought to be unpredictable. It has transformed our
understanding of the world around us and continues to be a
valuable tool in a various fields.
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Abstract

Fractals are fascinating geometrical figures that appear intri-
cate and complex, but are actually made up of small repeat-
ing patterns. They can be found in various natural and man-
made structures, such as snowflakes, coastlines, and African
designs. This paper explores the different dimensions that dis-
tinguish fractals, highlights some notable mathematical ex-
amples, and showcases the practical applications of fractals
in our world. By compiling various articles on the uses of
fractals, it is evident that they have enormous potential for
improving our understanding of patterns and providing more
efficient ways of studying them. Fractals are a vast and excit-
ing field that is yet to be fully explored, and their applications
are endless. By delving into the world of fractals, we can gain
a new appreciation for the beauty and complexity of our nat-
ural world, and perhaps even discover new ways of solving
practical problems.
Keywords: fractals, Hausdorff dimension, Minkowski–
Bouligand dimension, Mandelbrot set, Newton’s fractal

1 Introduction
1.1 Background and Purpose of Research

This paper investigates both the theoretical and practical
applications of fractals, providing an accessible understand-
ing of seemingly abstract and infinite concepts. Conceptu-
alized by the father of fractal geometry, Benoit Mandelbrot,
with the intention of modeling nature, fractals are utilized
to reflect a myriad of natural and chaotic processes, ranging
from galaxy formation to cancer growth at a cellular level.

To model these natural phenomena, the idea of fractals as
self-similar geometric figures emerged, signifying that each
component regardless of magnitude has the same statisti-
cal properties as the whole. Such figures provide a basis to
model the complexity, yet regularity, of certain forms of va-
riety. Fractal geometry captures the jagged nature of figures,
and as one zooms into a fractal, it appears to smooth out. As
parts of this paper delve into abstract and theoretical ideas,
it is essentially to keep the initial intent of fractals in mind:
to model reality. Thus, the needless idealization of perfectly
self-similar figures contradicts fractal geometry just as much
as the diametric opposition of perfectly smooth figures.

2 Fractal Dimension
One of the key characteristics of a fractal is its posses-

sion of a fractal dimension exceeding its integer topologi-
cal dimension (Albertovich & Aleksandrovna). Integer di-
mensions can be observed with two-dimensional and three-
dimensional figures; however, while fractional dimensions
align with similar concepts, they differ from standard dimen-
sions present in Euclidean geometry (Ross).

2.1 Hausdorff Dimension
Fractals found in mathematics can be expressed in both

algebraic and geometric manners. The most common math-
ematical definition, and the defining factor of a fractal, is the
presence of self-similarity in a pattern (Ross). Self-similarity
is not the only classification of a fractal, however. Self-
similar fractals are repeated internally, meaning that when
the pattern is enlarged, the same image is created at a smaller
scale. Essentially, such figures are made up of smaller ver-
sions of themselves (Bishop).

The scale of this repetition, called fractal dimension, falls
along the same scale as traditional dimensions within Eu-
clidean space (Albertovich & Aleksandrovna). In geome-
try, a line is considered one-dimensional, a square is two-
dimensional, and a cube is three-dimensional. When each of
these is separated to produce self-similar objects, the scale at
which the length, area, or volume – which can be referred to
as magnitude – decreases is 1

2 , 1
4 , and 1

8 , respectively, while
the scale factor of a side length remains 1

2 . The dimension of
these geometrical figures can therefore be thought of as any
given power required to raise the scale factor of a side length
such that it is equal to the scaled magnitude. Setting the mag-
nitude at M and scale factor at s, the relation can be defined
as M = sD, with D defined as the figure’s Hausdorff dimen-
sion (Albertovich & Aleksandrovna). Given M and s, D can
easily be found through the equation D = logs M = log M

log s .
Returning to the initial examples using standard geomet-

rical figures present in Euclidean space, in the line’s case,
when scaled by a factor of 1

2 , the magnitude becomes 1
2 of

the original, resulting in a dimension of 1, as 1
2 = ( 12 )

1.
Looking at the square, when the length is scaled by the same
factor of 1

2 , the magnitude is 1
4 of the initial figure’s, result-

ing in a dimension of 2, as 1
4=( 12 )

2. This relation remains
constant across figures of varying dimensions (Ross).
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This evolved definition of dimension can be extended to
fractal figures. Taking the Sierpinski triangle for instance,
the scale of self-similarity is 1

3 of the original size, mean-
ing that when a side length is scaled by 1

2 , the magnitude
is scaled by 1

3 , forming the equation 1
3 = ( 12 )

D, where
D equals approximately 1.585 (Bishop). In layman’s terms,
the Hausdorff dimension of a figure is essentially a measure
of irregularity, with an increased dimension indicating in-
creased roughness. As the fractal increases in complexity,
the dimension heightens.

3 Correlation Dimension
Beneficial to the measuring of roughness in a data set is

an understanding of the set’s density, accomplished through
the calculation of its correlation dimension, whereby balls
of radius ε are placed centered at a point x of a point cloud
and Nx(ε) represents the number of points within the ball
(Ross). The radius is then varied, with Nx(ε) ∝ εd, and
the average value of Nx(ε) is found over various points to
find C(ε), which is also proportional to εd. To estimate d
graphically, the graph of ln(C) and ln(ε) is plotted, and the
slope of the curve is taken as the dimension (Bishop). This
excludes the leftmost and rightmost sides of the curve, as
these flatten due to being too small to reach other points and
engulfing the entire set, respectively.

Figure 1: A sample curved produced by graphing ln(C)
against ln(ε)

(Arshad et al., 2021)

3.1 Minkowski–Bouligand Dimension
While computing a figure’s fractal dimension us-

ing Hausdorff dimension may be direct regarding sim-
ple or self-similar shapes, as Euclidean objects become
more complex, it becomes more effectual to find their
Minkowski–Bouligand dimension, a subset of fractal dimen-
sion. Minkowski–Bouligand dimension, additionally known
as box-counting dimension, is a manner of determining the

fractal dimension of a set S in a metric space (X, d) (Alber-
tovich & Aleksandrovna). This dimension is in many cases
equivalent to a figure’s Hausdorff dimension, though in cer-
tain sets the Minkowski dimension exceeds the Hausdorff
dimension, such as in the set of rational points between [0,1],
where they are 1 and 0, respectively. However, it consistently
differs from a figure’s correlation dimension, as it does not
take into account the density of a set (Bishop).

In order to compute this dimensional value, boxes of side
length are created along the set, with N(ε) representing the
total boxes that come in contact with the data. Given a curve
of length L, it can be found that N(ε) ∝ L

ε (ross). Continu-
ing, given a plane of area A, N(ε) ∝ A

ε2 , and given a three-
dimensional data set of volume V , N(ε) ∝ V

ε3 . It can there-
fore be concluded that N(ε) ∝ 1

εd
. In order to achieve the

most accurate dimension, ε must be reduced, producing the
equation d = limε→0

lnN(ε)

ln( 1
ε )

(if the limit exists). However,
this definition begins to deteriorate when figures such as the
Sierpinski triangle come into play, considering the consen-
sus on its area is murky at best (Ross). In such instances,
logN(ε) is plotted against log 1

ε , with its slope taken as the
dimension.

3.2 Coastline Applications
Grown to become almost synonymous with fractal di-

mensions, the coastline paradox presents the question of
how to calculate information regarding a coastline, con-
sidering it does not have a clearly defined length, result-
ing from ridges and inconsistencies that only compound as
the field of view narrows (Bishop). Coastline lengths vary
greatly, therefore, based on the scale of measurement, even-
tually approaching infinity. Taking into account a coastline’s
shape – neither truly self-similar, nor a primitive shape – the
Minkowski–Bouligand dimension is the most effective di-
mension to determine a coastline’s fractal dimension.

Figure 2: An estimation of the coastline of Britain’s fractal
dimension (Mahieu, 2014)

Through the slope of the line of best fit, it is apparent that
the coastline of Britain’s fractal dimension is approximately

2

1.25, acting as a quantitative index of the complexity of the
region’s coastline, comparable to others.

4 Mathematical Examples of Fractals
Fractals are what are known to be never-ending patterns,

being infinitely complex and jagged. Though self-similarity
isn’t necessarily a requisite for fractals, due to the iterative
nature of fractal creation, self-similarity in mathematical ex-
amples is widespread.

4.1 Dragon Curve
Dragon curves are defined as any member of a family of

self-similar fractals, approximated by a recursive system of
alternating directions, resulting in a fractal resembling the
shape of the mythical creature. First investigated by NASA
physicists John Heighway, Bruce Banks, and William Har-
ter, the Heighway dragon curve is arguably the most promi-
nent dragon curve (Albertovich & Aleksandrovna. Starting
from a single line, the curve is constructed by an iterative
process of the line splitting into two perpendicular smaller
lines and forming an isosceles triangle with the original line.
With each iteration, the direction of the split alternated be-
tween right and left, creating the curve. Another method in
constructing this shape is to pick a pivot point, either on the
far left or right, copy the original figure, and rotate it 90 de-
grees, alternating right and left. After undergoing just sev-
eral iterations, the dragon curve is formed. As this particular
fractal requires a recursive sequence of constant copying and
pasting, it is considered to be a self-similar shape, with frac-
tal dimension, or the dimensional value for self-similarity,
being around 1.5236.

Figure 3: A model on how iterations create the dragon curve
(Mahieu, 2014)

Several lesser-known versions of the dragon curve are
also present, such as the twin dragon, terdragon, and golden
dragon. The twin dragon, simply put, is two Heighway drag-
ons placed back to back, with one of the dragons rotated 180
degrees. The terdragon is a more elaborate version of the
Heighway dragon; as opposed to bisecting the initial line to
form 90-degree angles, the terdragon trisects and forms 120-
degree angles, resembling a sideways Z. The dimension for
self-similarity is less than that of the Heighway dragon, ap-
proximately at 1.26186 (Ross).

The Golden Dragon fractal is one that is closely related
to that of the Golden Ratio, first discovered by Leonardo

Davinchi. The fractal dimension of this fractal is the golden
ratio, or 1.618033. As seen by the comparison, the fractal
dimension of the golden dragon fractal is more similar to
that of the Heighway dragon than the Terdragon, thus, the
shape of the golden dragon is also more alike to the Heigh-
way dragon. However, instead of utilizing a perfectly per-
pendicular bisecting iterative sequence, the construction of
the golden dragon relies predominantly on the side lengths
of the two line segments (Albertovich & Aleksandrovna).
The ratio between the two side lengths is r, with r being
defined as (1/Φ)(1/Φ). With each iteration, the sides split
into even more intricate segments, alternating right and left,
maintaining the same ratio. The resultant dragon figure is a
beautiful curve of intricate detail.

Though the dragon curves themselves do not have much
use in the development of our knowledge in any field, it
demonstrates the idea of how a simple code, under many
iterations, can become complex and large.

4.2 Julia Set
Discovered by the renowned French mathematician, Gas-

ton Julia, the Julia set is one of the most crucial examples
of a mathematical fractal when it comes to the field of com-
plex dynamics (Bishop). The Julia set, along with the Fa-
tou set, are complementary sets defined by unique func-
tions, with a set point and constant to produce a fractal.
Fatou sets and Julia sets are similar in their iteration pro-
cesses; however, the Fatou set consists of numerical values
that behave similarly even when undergoing multiple itera-
tions, whereas the Julia set consists of numerical values that
behave chaotically when changed, even in the slightest quan-
tity. Julia sets can be created using a variety of formulas,
though the most widely known is the quadratic function de-
fined by w = z2 + C. The most significant factor in each
set’s difference are the initial values of Z and C, as the it-
eration process remains constant (Albertovich & Aleksan-
drovna). Both the values of Z and C are complex numbers,
consisting of a real and imaginary part, thus resulting in the
set’s position on the complex plane as opposed to the stan-
dard Cartesian plane.

Though the value of Z consistently represents the point
of interest, and the value of C represents as a constant, the
multitude of combinations of these values allows for an infi-
nite number of Julia sets. In each Julia set, the “fate” of each
complex number Z is evaluated (Bishop). In other words,
whether, as it is integrated, the number converges or di-
verges. The resultant is a myriad of different shapes, each
visually represented by black areas and varied colors. The
black regions indicate points where the numbers converge
or stay between a bounded region as they undergo iterations.
The colored regions, on the other hand, represent the com-
plex numbers of Z that diverge, with the chromaticity indi-
cating the speed at which the number tends toward infinity
(Ross).

4.3 The Mandelbrot Set
Stemming from the revelation of Julia sets, the Mandel-

brot set was created by Benoit Mandelbrot, utilizing the
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same quadratic function, w = z2 + C. As opposed to the
Julia sets, however, the Mandelbrot set only has a singular
variability factor, C, and always sets the initial value of Z
to zero (ross). Due to this, the resultant is a singular image,
which can be interpreted as a visual representation of all the
quadratic functioned Julia sets.

It was discovered that for any Julia set, the point (0,0)
on the complex plane determines the fate of the set, if the
point is connected, or shaded black, then the entire set is
connected; however, if the point is disconnected, or colored,
then the entire set is infinitely disconnected (Albertovich &
Aleksandrovna). Due to this, by compiling the origins of
each Julia set at the origin point, the resultant image of the
Mandelbrot set visually represents the behavior of all the
complex C values in the Julia set, each point representing a
unique Julia set (Bishop). If a Julia set with a pair of specific
values for their variables doesn’t diverge to infinity when it-
erated, the corresponding point is shaded black. Conversely,
if, under iteration, the Julia set escapes to infinity, the point
is colored, with the different hues representing the rate at
which the complex C-values diverge to infinity.

Figure 4: The Mandelbrot Set (The Mandelbrot Set, n.d.)

The outline of the Mandelbrot set consists of a main car-
dioid shape, and a smaller circular shape with converging
black regions on either side. These two figures are within
the x-value boundaries of -2 and 0.25, of which there are
C-values to which the Julia set is connected. The cardioid
shape represents the values of an attractive fixing point of
the Julia sets, of which are between the bounds of -0.75 to
0.25 (Ross). The circular shape represents the values of be-
having in a different manner and is situated within -1.25 and
-0.75. The other values are unable to escape toward infin-
ity, despite constant iterations; however, they do not fall into
either criterion of behavior.

The Mandelbrot set itself poses several interesting phe-
nomenons, including many of the Julia sets themselves be-
ing embedded into the mapping of the Mandelbrot set. In-
finitely many Julia sets of a variety of shapes and sizes can
be found within all areas of the Mandelbrot set. Further-
more, a significantly scaled-down figure of the Mandelbrot
set can be found centered around each of the respective Julia
sets (Bishop). Taking the role of one of the more celebrated
mathematical fractals, the Mandelbrot set is an excellent ex-
ample of the idea of a complex structure being produced

simply utilizing elementary rules.

4.4 Newton Fractals
Newton fractals are fractals that have been made using the

generalized form of Newton’s iteration. Contrary to belief,
Isaac Newton was not the creator of this particular fractal se-
ries, and on the contrary, wasn’t aware of its existence. New-
ton’s iteration is undoubtedly a concept that is well-known in
the calculus community, using derivatives to obtain a close
approximation of the root(s) of a function. The iteration,
also known as the Newton-Raphson method, is usually in the
general form of x(n + 1) = x(n) − [f(x)/f ′(x)], utilizing
tangent lines slopes as a way to approximate (Albertovich &
Aleksandrovna). Picking a starting point close to that of the
approximation value leads to almost a sudden convergence
to the root(s); however, when the starting approximation is
inaccurate and has a high error bound, an interesting phe-
nomenon occurs. In the context of calculus, the initial ap-
proximate value is typically picked within the realms of real
numbers, but for Newton’s fractals, this bound is expanded
to imaginary numbers, and mainly employs complex num-
bers.

Newton’s Fractals are a special case of Julia sets, with in-
tricate details arising from simple functions due to the rep-
etition of interactive sequences. The outcome of Newton’s
fractals is highly dependent on the starting point and can dif-
fer greatly from one another, despite the starting point yield-
ing such a minuscule change (Bishop). Similar to the Man-
delbrot set, Newton’s fractals are set in the complex plane
and can be represented as a map of all the possible starting
values of the approximation. Undergoing multiple iterations,
whichever root value each point ends up with is the color that
is assigned, and when the point is placed back into its orig-
inal position, Newton’s fractal is formed (Ross). The fractal
shape can change dramatically based on the initial function
conditions, and the number of iterations undergone can en-
large the details within each fractal.

4.5 The Fibonacci Sequence
An additional mathematical example of a fractal is the

Fibonacci sequence, the less renowned counterpart of the
golden ratio. This particular fractal, however, is unlike that
of the previously explored fractals in this paper and can
be classified as an arithmetic fractal rather than a geomet-
ric fractal. Named after Leonardo da Vinci’s pen name,
Fibonacci, the Fibonacci Sequence is a unique pattern of
which is defined by the recursive rules of xn = xn−1+xn−2

. Setting x0 at 0 and x1 at 1 allows for the sequence to
emerge as the following: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34....

The golden ratio emerges from these numbers; as the se-
quence continues on to infinity, the ratio between xn and
xn−1 becomes closer and closer to what we now define as
the golden ratio, or about 1.618. Using this ratio, Da Vinci
was able to figure out the nth term of the Fibonacci se-
quences, proven to be xn = (Φn − (1 − Φ)n)/

√
5. Within

his exploration, however, Da Vinci found that squaring the
numbers within the Fibonacci sequence allowed for a per-
fectly fitted arrangement of squares, which, when connected,
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became a perfect spiral, translating into the basic of divine
proportions – the golden spiral.

5 Application of Fractals
Though fractals were initially a more theoretical discov-

ery, they have since been found applicable in various aspects
of our lives, in both natural and industrial settings. With
their initial findings, fractals have been proven true to be an
incredibly valuable tool in synthesizing and analyzing pat-
terns, even when it isn’t blatantly obvious. Using this tool
has allowed for various advancements in the field of biol-
ogy, computer science, and medicine, and will continue to
assist in making groundbreaking discoveries.

5.1 Fractals in Nature
Fractals, despite their basis being mathematical, are

present everywhere in nature. From the physical shape of
natural figures, to the formation of their growing patterns,
fractals are highly prevalent in analyzing nature’s patterns.

The Fibonacci sequence, due to its recursive rule of hav-
ing the sum of the two previous terms be the next, has
the valuable characteristic of space efficiency—a tool that
greatly assists in effectively utilizing the space provided (Al-
bertovich & Aleksandrovna). Consequently, tree branches,
lightning, waterfalls, and even organisms’ reproduction pat-
terns mimic the sequence of Fibonacci, allowing for expan-
sion with efficient usage of space. Furthermore, on account
of the golden ratio being a principle law pertaining to natural
figures, the golden spiral can be found translated into nature,
such as in the shapes of seashells or the galaxy itself.

The Julia sets embedded into the Mandelbrot set are also
seen in various natural references. Due to its flexibility in its
manipulation of shape and size, Julia sets of diverse forma-
tions can be applied to similar organisms to better tailor the
exact details of each one (Bishop). The shape of octopus ten-
tacles, ferns, and waves are all in accordance with a branch
of Julia sets, whether that be the entirety of the Julia set, or
just a portion.

Figure 5: A Fractal Resembling an Octopus Tentacle (Pat-
terns - Industry IoT Consortium, 2023)

In order to achieve the figure of an octopus tentacle or a
wave, the entire Julia set would have to be used. However,
in contrast, only a small portion of the Julia set would be
used in mimicking the shape of a fern. The ability for nature
to be described with a singular fractal opens up an array of
possibilities in their application.

As fractals are highly relevant in nature, it is, in turn,
highly relevant in modeling it with the assistance of mod-
ern technology. As aforementioned, fractals oftentimes re-
semble the shape of a natural figure, with their systemic but
not perfectly symmetrical figure. As nature being imperfect
has been an established fact, having a figure that can embed
flaws into its design is highly useful in the field of com-
puter science (Bishop). The iterative nature of fractals lead-
ing to more complex figures allows for code to be written in
a much shorter amount of time, whilst simultaneously cre-
ating a more unique and accurate representation of nature
as a result. Though the Mandelbrot set itself isn’t found in
natural applications, aspects of it have been applied in re-
modeling nature, coastlines, low-flying terrain navigation,
area measurements, and even city planning (Ross). The as-
sistance of fractals has likewise led to an improvement in
the field of CGI, enabling graphic designers to create more
realistic animations and models.

5.2 Fractals in Medicine
Beyond seemingly abstract and disconnected applica-

tions, however, breakthroughs in the field of medicine using
fractals have veritable implications on human life and well-
being. From the use of fractals in ECG analysis to determine
blood vessel health, to the fractal-like nature of the lungs,
similar to that of a tree, whose functions both constitute res-
piration (Albertovich & Aleksandrovna). Surface area is di-
rectly proportional to the efficiency of gas exchange, a pro-
cess by which oxygen and carbon dioxide move by diffu-
sion across a surface, and fractal branching is an effectual
method to maximize surface area while concurrently mini-
mizing space.

Figure 6: A comparison of the structure of human lungs and
a tree. (Kelshiker, 2021)

Fractal patterns additionally have the potential to quan-
tify the precise stage of deterioration of the retina during the
clinical diagnosis of diabetic retinopathy, a complication of
diabetes that damages the retina and affects 80 percent of
all patients with diabetes for over ten years (Albertovich &
Aleksandrovna). This quantification of deterioration opens
pathways to evaluate the progress of treatment over time and
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determine a reference value to act as an indicator of patho-
logical cases, developing a non-invasive method of early
detection of retinal vascular diseases. Diabetic retinopathy
changes the structure of blood vessels, impacting the frac-
tal dimension of the retina (Albertovich & Aleksandrovna).
Apparent in Figure 4, when subjected to fractal analysis,
pathological cases have a lower Minkowski-Bouligand di-
mension, as compared to a normal eye, aiding in the diagno-
sis of such a disease.

Figure 7: A comparison of the fractal dimension of blood
vessels within normal eyes against that of patients with dia-
betic retinopathy. (Uahabi & Atounti, 2015)

6 Conclusion
The field of fractal geometry is a vast arena that has exten-

sive potential in its applications in diverse disciplines. It will
unquestionably contribute to a multitude of medicinal and
technological advances, facilitating the rapid revolutioniza-
tion of the world.

References
Albertovich, T. D. & Aleksandrovna, R. I. (2017, July 26).
The Fractal Analysis of the Images and Signals in Medical
Diagnostics. IntechOpen.
https://www.intechopen.com/chapters/55028
Arshad, M. H., Kassas, M., Hussein, A. E., Abido, M. A.
(2021, January 4). A Simple Technique for Studying Chaos
Using Jerk Equation with Discrete Time Sine Map.
ResearchGate.
https://www.researchgate.net/publication/348243264 A Simple
Technique for Studying Chaos Using Jerk Equation with Discrete

Time Sine Map
Bishop, C., Peres, Y. (2016). Fractals in Probability and
Analysis (Cambridge Studies in Advanced Mathematics).
Cambridge: Cambridge University Press.
doi:10.1017/9781316460238
Kelshiker, A. (2021, March 16). How Math Could Save
Lives – Dartmouth Undergraduate Journal of Science.
https://sites.dartmouth.edu/dujs/2021/03/16/ow-math-
could-save-lives/
Mahieu, E. (2014, January). Wolfram Demonstrations
Project.
https://demonstrations.wolfram.com/BoxCountingTheDimensionOf
Coastlines/
Patterns - Industry IoT Consortium. (2023, April 4).
Industry IoT Consortium.
https://www.iiconsortium.org/patterns/
Ross, S. (2022). Fractal Dimension - Box-Counting
Correlation Dimension [Video]. https://www.youtube.com/
watch?v=IfP4wAC4HtA&ab channel=RossDynamicsLab
The Mandelbrot Set. (n.d.).
http://www.math.utah.edu/ alfeld/math/mandelbrot/mandel-
brot.html
Uahabi, K. L., M. Atounti. (2015). Applications of fractals
in medicine. Annals of the University of Craiova -
Mathematics and Computer Science Series;
https://www.semanticscholar.org/paper/Applications-of-
fractals-in-medicine-Uahabi-
Atounti/ab3a0a5bde175e501896ffab1ac8319d111bc8bf

6

08
Singular Value 

Decomposition and 
a Recommendation 

Algorithm
Written by Frank XieSingular Value Decomposition and a Recommendation Algorithm (ATLA Project)

Frank Xie
xie48478@sas.edu.sg
Teacher Reviewer:

Mr. Zitur

Abstract

Given the dependence of most internet users on Google,
Amazon, or other search and recommendation engines, it is
important to recall the basis of many of these engines. This
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1 Introduction
As the digital world grows increasingly competitive,

many online companies have raced to make their products
and services more addictive, personal, and attractive than
ever. As they cater to more people, however, it becomes next
to impossible to use human time to customise or adjust to
a significant degree - instead, algorithms are used. Among
the most famous (or infamous) are the YouTube algorithm,
Spotify’s recommendations, and Amazon’s ”Customers who
bought this item also bought. . . ” One method used to make
these algorithms is singular value decomposition, or SVD.

Singular value decomposition is an extremely useful tech-
nique in many areas of science, mathematics, and data anal-
ysis, and is an extended version of eigendecomposition, also
known as diagonalisation. The reason that it is more pow-
erful than diagonalisation is because it can factor all matri-
ces, while diagonalisation can only be performed on certain
(non-defective) matrices.

Before creating a SVD, the concept of singular values of
an m × n matrix A should be considered first. These are
the eigenvalues of ATA, which must necessarily be n × n,
and there must exist an orthonormal basis for Rn consisting
of the eigenvectors of ATA, v1,v2, . . . ,vn with associated
nonnegative eigenvalues λ1, λ2, . . . , λn. With some renum-
bering, it is always possible to assume that the eigenvalues
can be arranged in descending order such that

λ1 ≥ λ2 ≥ · · · ≥ λn.

The square roots of each λn correspond to σ1, σ2, . . . , σn

which are in descending order. These σn =
√
λn are the

singular values of A, and represent the lengths of the vectors
Av1,Av2, . . . ,Avn, among other things. These values are
key to creating a SVD.

The SVD can be stated as A = UΣVT, for any m × n
matrix A with rank r, and Σ a diagonal matrix of the form




D 0 . . . 0
0 0
...

. . .
0 0




and D an r × r matrix of the form




σ1 0 . . . 0
0 σ2

...
. . .

0 σr




if σr is the least nonzero singular value of A; and where
U and V are orthogonal matrices.

2 Construction of an SVD
The construction of a singular value decomposition can

be split into 3 steps (”Linear Algebra and its Applications”).
This example will show the decomposition of

A =


3 2 2
2 3 −2


.

Step 1. Find an orthogonal diagonalisation of ATA. This
is often difficult with larger matrices (due to the difficulty in
finding their eigenvalues), but for smaller matrices is doable.
First, find the eigenvalues of ATA, which in this case are 25,
9, and 0. Then, since ATA is symmetric the eigenvectors
must be orthogonal, so simply computing them is enough.
We find the eigenvectors as unit vectors

Abstract



44 45

Singular Value Decomposition and a Recommendation Algorithm (ATLA Project)

Frank Xie
xie48478@sas.edu.sg
Teacher Reviewer:

Mr. Zitur

Abstract

Given the dependence of most internet users on Google,
Amazon, or other search and recommendation engines, it is
important to recall the basis of many of these engines. This
paper will reconstruct a rudimentary recommendation algo-
rithm and present a potential use for it in the form of a book
recommender using data from Kaggle. The main tool used in
the algorithm is singular value decomposition, or SVD, and
code was executed in Python.
Keywords: recommendation algorithm, Singular Value De-
composition (SVD), eigenvalues, diagonalization, Kaggle

1 Introduction
As the digital world grows increasingly competitive,

many online companies have raced to make their products
and services more addictive, personal, and attractive than
ever. As they cater to more people, however, it becomes next
to impossible to use human time to customise or adjust to
a significant degree - instead, algorithms are used. Among
the most famous (or infamous) are the YouTube algorithm,
Spotify’s recommendations, and Amazon’s ”Customers who
bought this item also bought. . . ” One method used to make
these algorithms is singular value decomposition, or SVD.

Singular value decomposition is an extremely useful tech-
nique in many areas of science, mathematics, and data anal-
ysis, and is an extended version of eigendecomposition, also
known as diagonalisation. The reason that it is more pow-
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The SVD can be stated as A = UΣVT, for any m × n
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and D an r × r matrix of the form




σ1 0 . . . 0
0 σ2

...
. . .

0 σr




if σr is the least nonzero singular value of A; and where
U and V are orthogonal matrices.

2 Construction of an SVD
The construction of a singular value decomposition can

be split into 3 steps (”Linear Algebra and its Applications”).
This example will show the decomposition of

A =


3 2 2
2 3 −2


.

Step 1. Find an orthogonal diagonalisation of ATA. This
is often difficult with larger matrices (due to the difficulty in
finding their eigenvalues), but for smaller matrices is doable.
First, find the eigenvalues of ATA, which in this case are 25,
9, and 0. Then, since ATA is symmetric the eigenvectors
must be orthogonal, so simply computing them is enough.
We find the eigenvectors as unit vectors

v1 =



1/
√
2

1/
√
2

0


 , λ = 25

v2 =




1/
√
18

−1/
√
18

4/
√
18


 , λ = 9.

Then, finding a vector orthogonal to both vectors (i.e. not-
ing that their dot product will equal 0) yields the final eigen-
vector

v3 =


2/3
−2/3
−1/3



Step 2. Set up Σ and V. V is simply [v1 v2 v3], for their
corresponding eigenvalues in decreasing order. In the final
SVD, the transpose, VT is used, which equals




1/
√
2 1/

√
2 0

1/
√
18 −1/

√
18 4/

√
18

2/3 −2/3 −1/3


 .

Then, using the singular values (simply the square roots
of the nonzero eigenvalues in order) 5 and 3,

Σ =


5 0 0
0 3 0



Note the 0 column padding out the matrix into a 2 × 3
matrix.

Step 3. Construct U. Finally, using the formula
ui =

1
σi
Avi, so that U = [u1 u2 u3], we find

U =


1/
√
2 1/

√
2

1/
√
2 −1/

√
2



Then, the singular value decomposition of the matrix is

A = UΣVT

=


1√
2

1√
2

1√
2

− 1√
2


5 0 0
0 3 0




1√
2

1√
2

0
1√
18

− 1√
18

4√
18

2
3 − 2

3 − 1
3


 .

This process can be cleverly modified to increase compu-
tation speed for computers, but this method will suffice for
most human requirements.

3 Recommendation Algorithm
The code used here will be intentionally reductive, as pro-

gramming a full implementation of all the steps involved in
SVD is unnecessarily complex. For larger algorithms, some
clever math and programming is required to reduce the pro-
cessing power required, as the increase in processing power

would otherwise be roughly linear—not great for, say, 48
million data points. This implementation will be done in
python.

The algorithm is in roughly three stages: preprocessing
the data, performing singular value decomposition, and in-
terpreting the output. The imported libraries are

1 import numpy as np
2 import pandas as pd
3 from scipy.linalg import svd
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 import os
which are used to process and visualise the data. An ex-

tremely rigorously collected set of data on food preferences
is used as an example dataset (where A = Apple, B = Ba-
nana, C = Curry, D = Durian, É = Éclair, and F = Fries;
scores range from 0 to 10. Yes, I really asked people this.
Yes, they were confused.):

A B C D É F
AM 4 10 10 6 3 7
BU 6 7 0 10 3 3
JL 7 10 10 5 3 10
JZ 6 7 4 3 6 7
HC 4 7 1 3 8 2
HY 3 6 10 5 7 6
RY 5 4 0 7 6 10
RP 6 9 0 4 1 6
JK 5 5 0 3 7 8
SB 2 8 10 4 9 7
ZK 5 1 10 1 10 10
WH 6 8 4 3 4 0
AL 0 0 10 0 10 10

3.1 Preprocessing the Data
This step either randomly generates or takes a .csv file

and outputs a matrix that is users by items in size. This is
necessary for the next steps, as the data that is given in the
main method (see visualising the data) is unpacked into a list
and needs to be a matrix.

1 def randmatrix(users, items): # creates
random matrix that is users x items

2 data = []
3 for i in range(users):
4 user = [np.random.randint(11)/10

for _ in range(items)]
5 data.append(user)
6 mat = pd.DataFrame(data)
7 mat.index = ["User " + str(i) for i

in range(users)]
8 mat.columns = ["Item " + str(i) for

i in range(items)]
9 return mat

10
11
12 def matrix(users, values): # creates

predefined matrix (values) that is
users x items

13 data = []
14 for i in range(users):
15 user = [values[6*i + k] for k in

range(6)]
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Given the dependence of most internet users on Google,
Amazon, or other search and recommendation engines, it is
important to recall the basis of many of these engines. This
paper will reconstruct a rudimentary recommendation algo-
rithm and present a potential use for it in the form of a book
recommender using data from Kaggle. The main tool used in
the algorithm is singular value decomposition, or SVD, and
code was executed in Python.
Keywords: recommendation algorithm, Singular Value De-
composition (SVD), eigenvalues, diagonalization, Kaggle

1 Introduction
As the digital world grows increasingly competitive,

many online companies have raced to make their products
and services more addictive, personal, and attractive than
ever. As they cater to more people, however, it becomes next
to impossible to use human time to customise or adjust to
a significant degree - instead, algorithms are used. Among
the most famous (or infamous) are the YouTube algorithm,
Spotify’s recommendations, and Amazon’s ”Customers who
bought this item also bought. . . ” One method used to make
these algorithms is singular value decomposition, or SVD.

Singular value decomposition is an extremely useful tech-
nique in many areas of science, mathematics, and data anal-
ysis, and is an extended version of eigendecomposition, also
known as diagonalisation. The reason that it is more pow-
erful than diagonalisation is because it can factor all matri-
ces, while diagonalisation can only be performed on certain
(non-defective) matrices.

Before creating a SVD, the concept of singular values of
an m × n matrix A should be considered first. These are
the eigenvalues of ATA, which must necessarily be n × n,
and there must exist an orthonormal basis for Rn consisting
of the eigenvectors of ATA, v1,v2, . . . ,vn with associated
nonnegative eigenvalues λ1, λ2, . . . , λn. With some renum-
bering, it is always possible to assume that the eigenvalues
can be arranged in descending order such that

λ1 ≥ λ2 ≥ · · · ≥ λn.

The square roots of each λn correspond to σ1, σ2, . . . , σn

which are in descending order. These σn =
√
λn are the

singular values of A, and represent the lengths of the vectors
Av1,Av2, . . . ,Avn, among other things. These values are
key to creating a SVD.

The SVD can be stated as A = UΣVT, for any m × n
matrix A with rank r, and Σ a diagonal matrix of the form




D 0 . . . 0
0 0
...

. . .
0 0




and D an r × r matrix of the form




σ1 0 . . . 0
0 σ2

...
. . .

0 σr




if σr is the least nonzero singular value of A; and where
U and V are orthogonal matrices.

2 Construction of an SVD
The construction of a singular value decomposition can

be split into 3 steps (”Linear Algebra and its Applications”).
This example will show the decomposition of

A =


3 2 2
2 3 −2


.

Step 1. Find an orthogonal diagonalisation of ATA. This
is often difficult with larger matrices (due to the difficulty in
finding their eigenvalues), but for smaller matrices is doable.
First, find the eigenvalues of ATA, which in this case are 25,
9, and 0. Then, since ATA is symmetric the eigenvectors
must be orthogonal, so simply computing them is enough.
We find the eigenvectors as unit vectors
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16 data.append(user)
17 mat = pd.DataFrame(data)
18 mat.index = ["User " + str(i + 1)

for i in range(users)]
19 mat.columns = ["Item " + str(i + 1)

for i in range(6)]
20 return mat

3.2 Processing the Data
This step simply performs SVD on the matrix A that is

outputted from the previous step, returning the smallest pos-
sible U, Σ, and VT. While it is possible to program this de-
composition myself, the library provided a significantly less
computationally intensive algorithm. Usually, SVD is fairly
difficult for a computer to process. This algorithm also re-
duces the dimensionality of U and V in order to keep the
matrices as easy to visualise as possible. The columns that
are kept (k) correspond to the highest singular values.

1 def do_svd(mat, k=0, option=False): #
performs singular value decomposition
on matrix mat and returns sigma, u,

and vt
2 u, sigma, vt = svd(mat)
3 u = pd.DataFrame(u[:,:k])
4 vt = pd.DataFrame(vt[:k,:])
5 if option:
6 return sigma
7 else:
8 return u, vt

3.3 Interpreting the Output
The output is processed here. This method takes in an item

and VT, returning the most ’recommended’ item based on
the preferences of everyone in the dataset. This is computed
by dotting each column of VT with the item, and finding the
item the least distance (which, by SVD, must be the most
similar).

1 def recommend(item, vt, output_num=1): #
recommendation using dot product

distance
2 global rec
3 rec = []
4 for item in range(len(vt.columns)):
5 if item != item:
6 rec.append([item,np.dot(vt[

item],vt[item])])
7 final_rec = [i[0] for i in sorted(

rec, key=lambda x: x[1],reverse=True)
]

8 return final_rec[:output_num]

3.4 Visualising the Data
Finally, the data is visualised. The method defined above

simply plots the data using matplotlib, and the main method
uses the above functions to extract data from the .csv and
create a basic interface.

1 def plot_data(mat, data_type, camera=
None): # plots data using matplotlib

2 fig = plt.figure()
3 ax = fig.add_subplot(111, projection

=’3d’)
4 if camera != None:

5 ax.view_init(elev=camera[0],
azim=camera[1])

6 for index, row in mat.iterrows():
7 ax.scatter(row[0], row[1], row

[2], alpha=0.8)
8 ax.text(row[0], row[1], row[2],’

{0} {1}’.format(data_type, index),
size=10)

9 plt.show()
10
11 // skip //
12
13
14 if __name__ == "__main__":
15 filename = os.getcwd()+"\\Downloads

\\"+"likesdata.txt"
16 a = matrix(12, list(np.array([*[[int

(i) for i in line.split(",")] for
line in open(filename, "r").readlines
()]]).reshape((-1)))) # this works

17 #a = randmatrix(20, 10)
18 u = do_svd(a, 3)[0]
19 vt = do_svd(a, 3)[1]
20
21
22 print(a)
23 n = int(input())
24 print("If you liked " + str(n) + ",

try " + str(recommend(n, VT, 2)))
25 print(rec)
26 plot_data(u, "User")
27 plot_data(vt.T, "Item")

The output of the program looks like this:

Figure 1: Printout of the data table

Figure 2: The upper number is user-inputted; the algorithm
returns that if a user liked curry (2) that they would most
likely also like bananas (1) and fries (5)

4 Extension: Curing Ennui
I needed book recommendations, but interacting with

people is cringe. So I used my algorithm to cure my book
ennui.

3

Figure 3: A graph is created that shows the propinquity (sim-
ilarity) of each user - user 7 (RY) is very similar to user 9
(JK), as they are close to each other

4.1 How to Cure Ennui with Math
Having gone through the legwork of creating the al-

gorithm, my extension is mostly in refining and apply-
ing the algorithm to something that will help me per-
sonally, and potentially others, with motivation. The first
part of the extension is in finding the data, for which I
turned to the scourge of Big Data - Kaggle. As much
as I hate the modern invasion of privacy that the in-
ternet has provided, Alphabet’s benevolence in provid-
ing this data is very helpful. The dataset I imported
was Book Ratings: https://www.kaggle.com/arashnic/book-
recommendation-dataset?select=Ratings.csv

4.2 Preprocessing
The book dataset was very large (340,556 unique users,

each rating a large number of books), so efficiency was more
important in analysing the dataset. The first task was to gen-
erate a matrix, with size users x books, which was done us-
ing the following code:

1 import os
2 import pandas
3 import numpy as np
4
5 df = pandas.read_csv(os.getcwd()+"\\"+"

Ratings.csv")
6
7 books = df["ISBN"].unique()
8 books = books[:5000]
9

10 df_small = df.loc[df["ISBN"].isin(books)
]

11 users = df_small["User-ID"].unique()
12
13 df = df_small.copy()
14
15 matrix = pandas.DataFrame(data=np.zeros(

dtype=np.uint8,shape=(len(users),len(
books))),index=users,columns=books)

16 for _, row in df.iterrows():
17 matrix.at[row["User-ID"], row["ISBN"

]] = row["Book-Rating"]
18
19 matrix.to_csv(os.getcwd()+"\\"+"matrix.

csv")
20 print(matrix)

which I ran separately from the main code, as this re-
moves the necessity of generating the whole matrix every
time this algorithm is run.

This preprocessing step also served to choose a sampling
of the books - the first 5000 unique books by their ISBN,
which was randomised. This was to reduce processing time,
as the original algorithm I applied took extremely long to
run, and would have generated a file that contained upwards
of 400 GB of data.

4.3 Output

The output of the algorithm is similar to earlier. The ma-
trix looks like this:

Figure 4: Output matrix

Most users fell along a particular line, but a few were out-
liers (they rated a lot of books!), and the most popular books
also became outliers:

Figure 5: Graph of users

4
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Figure 6: Graph of books

Note that the plots, for readability’s sake, do not plot ev-
ery single user or item. The most interesting part of the algo-
rithm, for me, was getting the book recommendation, which
was as follows:

160 corresponded to The Catcher in the Rye, and 173 and
9 to The Catcher in the Rye - Barron’s Book Notes and
The Adventures of Huckleberry Finn, respectively. Conve-
niently, I haven’t read The Adventures of Huckleberry Finn
before, so I may very well read it now. Note that the algo-
rithm is fairly efficient; even running with 16824500 data-
points (33649 × 5000), it only takes 10 minutes or so to run,
after an update to the way the data is packed (as a matrix
.csv, rather than a plain list).

5 Summary
This algorithm has been shown now to be useful enough

in providing recommendations. The largest bottlenecks in
performance come from the generation of the matrix and
the matrix computations needed. Other implementations
of this algorithm, or future uses of this implementation,
should probably spend some time designing a more
friendly GUI and optimising performance. Other datasets
available online are also usable with this algorithm:
https://www.kaggle.com/shadey/spotify-2010-2019/data,
for example, which is a Spotify music preference dataset.
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Abstract

Linear algebra is generally introduced through working with
the real number system in different dimensions (R, R2, R3,
and so on). However, there are a variety of alternative number
systems that are fields, which embrace multidimensionality in
a much more accessible and natural manner.

In this paper, I aim to investigate a few of these number sys-
tems, interpret them through linear algebra, and discover a
higher number system which embraces eigenvalues in a nat-
ural way. Essentially, I will extend on my understanding of
linear algebra and eigenvectors to interpret the behaviour of
different number systems.
Keywords: eigenvalues, Clifford Algebra, multidimensional-
ity, number systems

1 Exploration of Different Number Systems
There are a variety of different number systems that we

can investigate. These include the rational numbers (Q),
complex numbers (C), quarternions (H), finite fields (Zn),
and many more. However, the aim here is not to investi-
gate an arbitrary number system. Rather, we want to inves-
tigate number systems that naturally incorporate elements
and properties of linear algebra. This means that we want to
find number systems that naturally combine scalar and vec-
tor properties. In fact, after some researching, there is indeed
a class of number systems which do just this: Clifford Alge-
bras.

A Clifford Algebra, denoted Cla,b(R), is a class of alge-
bras where any general element q = a + v⃗, where a is the
scalar part and v⃗ is the vector part. Adding two elements
simply makes use of scalar and vector addition, but multi-
plying two elements gives us an interesting combination of
scalar multiples, dot products, and cross products.

More generally speaking, if e⃗1, e⃗2, e⃗3, ... are orthogonal
unit vectors, a Clifford Algebra element can be defined as:

q = a0 + a1e⃗1 + a2e⃗2 + a3e⃗3 + ...

In this case, the column vector representing our element q
is:




a0
a1
a2
a3
...




And, since Clifford Algebras already define addition and
multiplication between elements for us, we can directly take
these definitions to linear algebra, by using vector addi-
tion and matrix multiplication. This gives us a number sys-
tem framework that naturally incorporates vector and matrix
properties.

Now that we have a basic understanding of how linear al-
gebra can be applied to understand Clifford Algebras, we
seek to understand how eigenvectors can be applied to these
algebras. In particular, just as eigenvectors seek to under-
stand how matrix multiplication and scalar multiplication act
equivalently on a vector, in these Clifford Algebras, we want
to discover whether or not element-wise multiplication and
scalar multiplication act equivalently on elements.

We may begin by selecting a few basic Clifford Algebras
and analyzing whether or not this is possible.

2 Complex Numbers
The most intuitive Clifford Algebra to begin with is

Cl1,0(R), or the complex number system (C). This is be-
cause each z ∈ C can be written in two components (a+bi).
In order to discover whether or not eigenvectors can be ap-
plied to complex numbers, we have to take two steps. First,
we apply linear algebra to complex numbers. Second, we
search for eigenvectors in this linear algebra representation
of complex numbers.

2.1 Applying Linear Algebra to Complex
Numbers

Applying linear algebra to complex numbers takes three
steps. First, we need to represent each complex number as a
vector in linear algebra. Second, we need to define addition
in this algebra. Third, we need to define multiplication in
this algebra.

First, it is not too hard to represent each complex number
as a vector in linear algebra. To map C → R2, for each
z ∈ C, where z = a+ bi (for a, b ∈ R), we have:

z =

(
a
b

)

Then, for addition, given z1 = a1+b1i and z2 = a2+b2i,
we know that z1+z2 = (a1+a2)+(b1+b2)i. So, we have:

(
a1
b1

)
+

(
a2
b2

)
=

(
a1 + a2
b1 + b2

)

This is just normal vector addition.
Finally, for multiplication, given z1 = a1 + b1i and z2 =

a2 + b2i, we know that z1 · z2 = (a1a2 − b1b2) + (a1b2 +
a2b1)i. So, we have:

(
a1
b1

)
·
(
a2
b2

)
=

(
a1a2 − b1b2
a1b2 + a2b1

)

This is clearly not normal vector multiplication. Instead,
we can give z2 a multiplication matrix, say Az2 , such that
z1 · z2 in the complex numbers equals Az2 · z1 in linear
algebra.

In general, for z = a+ bi, say:

Az =

(
a −b
b a

)

Then, we have that z1 · z2 is:
(
a2 −b2
b2 a2

)(
a1
b1

)
=

(
a1a2 − b1b2
a1b2 + a2b1

)

This checks out, so our new definition of multiplication
holds.

2.2 Eigenvectors in the Complex Numbers
In order to find eigenvectors in the complex numbers, we

ask: is it possible to find a set of complex numbers S such
that for all z1, z2 ∈ S, z2 = λ1z1 and z1 · z2 = λ2z1 (for
λ1, λ2 ∈ R)?

This can be verified in a few steps.
First, suppose we know z0 = a0 + b0i ∈ S.
Then, z = a + bi ∈ S if and only if z = λ1z0 and

z0 · z = λ2z0.
So, since z = λ1z0:

z = λ1 ·
(
a0
b0

)
=

(
λ1a0
λ1b0

)

This means:

z0 · z =

(
a0
b0

)
·
(
λ1a0
λ1b0

)
=

(
λ1a0 −λ1b0
λ1b0 λ1a0

)(
a0
b0

)

Since this is equal to λ2z0, we have:
(
λ1a0 −λ1b0
λ1b0 λ1a0

)(
a0
b0

)
= λ2

(
a0
b0

)

With some manipulation, we get:
(
λ1a0 − λ2 −λ1b0

λ1b0 λ1a0 − λ2

)(
a0
b0

)
= 0

Since the determinant of the left-hand matrix must be
equal to 0, by the eigenvector characteristic equation, we get:

(λ1a0 − λ2)
2 + (λ1b0)

2 = 0

However, this is only satisfied if both λ1a0 − λ2 = 0 and
λ1b0 = 0. If λ1b0 = 0, either λ1 = 0 or b0 = 0, both of
which are trivial solutions.

2.3 Summary for Complex Numbers
Unfortunately, these trivial solutions suggest to us that

there exist no such eigenvectors and eigenvalues in the com-
plex numbers. Intuitively though, this should make sense.
When multiplying by a complex number, the result, for any
other complex number, is a rotation and a dilation. This ro-
tation sets it off the axis we would ideally want it to be on.
Thus, we must look to different number systems for our so-
lution.

3 Split-Complex Numbers
After recognizing that the previous issue lied within the

sum of squares in the final characteristic equation, we may
approach a different Clifford Algebra to overcome this is-
sue, namely the split-complex number system (Cl0,1(R)),
or R ⊗ R. This number system works very similar to the
complex numbers, except that i2 = 1 instead. In order to
discover whether or not eigenvectors can be applied to split-
complex numbers, we take the same two steps as last time.
First, we apply linear algebra to this number system. Second,
we search for eigenvectors in this linear algebra representa-
tion of split-complex numbers.

3.1 Applying Linear Algebra to Split-Complex
Numbers

Once again, applying linear algebra to split-complex
numbers takes three steps. First, we need to represent each
z ∈ Cl0,1(R) as a vector in linear algebra. Second, we need
to define addition in this algebra. Third, we need to define
multiplication in this algebra.

First, just as before, it is not too hard to represent each z ∈
Cl0,1(R) as a vector in linear algebra. To map Cl0,1(R) →
R2, for each z ∈ Cl0,1(R), where z = a+ bi (for a, b ∈ R),
we have:

z =

(
a
b

)

Then, for addition, given z1 = a1+b1i and z2 = a2+b2i,
we know that z1+z2 = (a1+a2)+(b1+b2)i. So, we have:

(
a1
b1

)
+

(
a2
b2

)
=

(
a1 + a2
b1 + b2

)

This, once again, is just normal vector addition.
Finally, for multiplication, given z1 = a1 + b1i and z2 =

a2 + b2i, we know that z1 · z2 = (a1a2 + b1b2) + (a1b2 +
a2b1)i. Note the difference here from last time. So, we have:

(
a1
b1

)
·
(
a2
b2

)
=

(
a1a2 + b1b2
a1b2 + a2b1

)

2
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This is clearly not normal vector multiplication. Instead,
we can give z2 a multiplication matrix, say Az2 , such that
z1 ·z2 in the split-complex numbers equals Az2 ·z1 in linear
algebra.

In general, for z = a+ bi, say:

Az =


a b
b a



Then, we have that z1 · z2 is:

a2 b2
b2 a2


a1
b1


=


a1a2 + b1b2
a1b2 + a2b1



This checks out, so our new definition of multiplication
holds.

3.2 Eigenvectors in the Split-Complex Numbers
In order to find eigenvectors in the split-complex num-

bers, we ask: is it possible to find a set S ⊂ Cl0,1(R) such
that for all z1, z2 ∈ S, z2 = λ1z1 and z1 · z2 = λ2z1 (for
λ1, λ2 ∈ R)?

This can be verified in a few steps.
First, suppose we know z0 = a0 + b0i ∈ S.
Then, z = a + bi ∈ S if and only if z = λ1z0 and

z0 · z = λ2z0.
So, since z = λ1z0:

z = λ1 ·

a0
b0


=


λ1a0
λ1b0



This means:

z0 · z =


a0
b0


·

λ1a0
λ1b0


=


λ1a0 λ1b0
λ1b0 λ1a0


a0
b0



Since this is equal to λ2z0, we have:

λ1a0 λ1b0
λ1b0 λ1a0


a0
b0


= λ2


a0
b0



With some manipulation, we get:

λ1a0 − λ2 λ1b0

λ1b0 λ1a0 − λ2


a0
b0


= 0

Since the determinant of the left-hand matrix must be
equal to 0, by the eigenvector characteristic equation, we get:

(λ1a0 − λ2)
2 − (λ1b0)

2 = 0

This means that λ1a0 −λ2 = λ1b0, or that λ2 = λ1(a0 −
b0). Putting this back into our original matrix multiplication
equation, we get:


λ1a0 λ1b0
λ1b0 λ1a0


a0
b0


= λ1(a0 − b0)


a0
b0



With some manipulation, we have:

λ1(a

2
0 + b20)

λ1(2a0b0)


=


λ1(a

2
0 − a0b0)

λ1(a0b0 − b20)



Breaking this into two parts, on the top we have:

λ1(a
2
0 + b20) = λ1(a

2
0 − a0b0) =⇒ b0 = a0

And, on the bottom we have:

λ1(2a0b0) = λ1(a0b0 − b20) =⇒ a0 = −b0

This system of equations solves to a0 = 0, b0 = 0, which
is, once again, trivial.

3.3 Summary for Split-Complex Numbers
Unfortunately, these trivial solutions also suggest to us

that there exist no such eigenvectors and eigenvalues in the
split-complex number system. While there is no intuitive ex-
planation here, we must still look to different number sys-
tems for our solution.

4 Cl1,1(R)
It seems so far that there is no Clifford Algebra which in-

corporates linear algebra and eigenvectors in a natural way.
However, before generalizing our conclusions to the wider
class of Clifford Algebras, it is worth considering an alge-
bra with a larger column matrix. In particular, we will con-
sider the Clifford Algebra Cl1,1(R). This number system
can almost be considered as a combination of complex and
split-complex numbers. Basically, in this system, we have
two basis vectors i and j, such that i2 = −1 and j2 = 1.
This means that each z ∈ Cl1,1(R) can be expressed as
z = a + bi + cj + dij. In order to discover whether or not
eigenvectors can be applied to Cl1,1(R), we take the same
two steps as last time. First, we apply linear algebra to this
number system. Second, we search for eigenvectors in this
linear algebra representation of Cl1,1(R).

4.1 Applying Linear Algebra to Cl1,1(R)
Once again, applying linear algebra to Cl1,1(R) takes

three steps. First, we need to represent each z ∈ Cl1,1(R)
as a vector in linear algebra. Second, we need to define ad-
dition in this algebra. Third, we need to define multiplication
in this algebra.

First, just as before, it is not too hard to represent each z ∈
Cl1,1(R) as a vector in linear algebra. To map Cl1,1(R) →
R2, for each z ∈ Cl1,1(R), where z = a+ bi+ cj+ dij (for
a, b, c, d ∈ R), we have:

z =



a
b
c
d




Then, for addition, given z1 = a1 + b1i + c1j + d1ij
and z2 = a2 + b2i + c2j + d2ij, we know that z1 + z2 =
(a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)ij. So, we
have:



a1
b1
c1
d1


+



a2
b2
c2
d2


 =



a1 + a2
b1 + b2
c1 + c2
d1 + d2




3

This, once again, is just normal vector addition.
Finally, for multiplication, given z1 = a1 + b1i + c1j +

d1ij and z2 = a2 + b2i + c2j + d2ij, through expansion
and distribution, we can find that z1 · z2 = (a1a2 − b1b2 +
c1c2 + d1d2) + (a1b2 + b1a2 − c1d2 + d1c2)i + (a1c2 −
b1d2+c1a2+d1b2)j+(a1d2+b1c2−c1b2+d1a2)ij. Note
the difference here from last time. So, we have:



a1
b1
c1
d1


 ·



a2
b2
c2
d2


 =



a1a2 − b1b2 + c1c2 + d1d2
a1b2 + b1a2 − c1d2 + d1c2
a1c2 − b1d2 + c1a2 + d1b2
a1d2 + b1c2 − c1b2 + d1a2




This is clearly not normal vector multiplication. Instead,
we can give z2 a multiplication matrix, say A(z2), such that
z1 · z2 in the split-complex numbers equals A(z2) · z1 in
linear algebra.

In general, for z = a+ bi+ cj + dij, say:

Az =



a −b c d
b a −d c
c −d a b
d c −b a




Then, we have that z1 · z2 is:


a2 −b2 c2 d2
b2 a2 −d2 c2
c2 −d2 a2 b2
d2 c2 −b2 a2






a1
b1
c1
d1




=



a1a2 − b1b2 + c1c2 + d1d2
a1b2 + b1a2 − c1d2 + d1c2
a1c2 − b1d2 + c1a2 + d1b2
a1d2 + b1c2 − c1b2 + d1a2




This checks out, so our new definition of multiplication
holds.

4.2 Eigenvectors in the Cl1,1(R)
In order to find eigenvectors in Cl1,1(R), we ask: is it pos-

sible to find a set S ⊂ Cl1,1(R) such that for all z1, z2 ∈ S,
z2 = λ1z1 and z1 · z2 = λ2z1 (for λ1, λ2 ∈ R)?

This can be verified in a few steps.
First, suppose we know z0 = a0 + b0i+ c0j + doij ∈ S.
Then, z = a+ bi+ cj + dij ∈ S if and only if z = λ1z0

and z0 · z = λ2z0.
So, since z = λ1z0:

z = λ1 ·



a0
b0
c0
d0


 =



λ1a0
λ1b0
λ1c0
λ1d0




This means:

z0 · z =



a0
b0
c0
d0


 ·



λ1a0
λ1b0
λ1c0
λ1d0




=



λ1a0 −λ1b0 λ1c0 λ1d0
λ1b0 λ1a0 −λ1d0 λ1c0
λ1c0 −λ1d0 λ1a0 λ1b0
λ1d0 λ1c0 −λ1b0 λ1a0






a0
b0
c0
d0




Since this is equal to λ2z0, we have:


λ1a0 −λ1b0 λ1c0 λ1d0
λ1b0 λ1a0 −λ1d0 λ1c0
λ1c0 −λ1d0 λ1a0 λ1b0
λ1d0 λ1c0 −λ1b0 λ1a0






a0
b0
c0
d0


 = λ2



a0
b0
c0
d0




With some manipulation, we get:



λ1a0 − λ2 −λ1b0 λ1c0 λ1d0

λ1b0 λ1a0 − λ2 −λ1d0 λ1c0
λ1c0 −λ1d0 λ1a0 − λ2 λ1b0
λ1d0 λ1c0 −λ1b0 λ1a0 − λ2






a0
b0
c0
d0




= 0

Since the determinant of the left-hand matrix must be
equal to 0, by the eigenvector characteristic equation, we
get a very complicated equation. After simplifying and can-
celling, we are left with:

(λ1a0−λ2)
4−(λ1b0)

4+(λ1c0)
4+(λ1d0)

4+2(λ1a0−λ2)
2

(λ1b0)
2 − 2(λ1a0 − λ2)

2(λ1c0)
2 − 2(λ1a0 − λ2)

2(λ1d0)
2

−2(λ1b0)
2(λ1c0)

2−2(λ1b0)
2(λ1d0)

2+2(λ1c0)
2(λ1d0)

2

= 0

Given that this equation is so complex, it is extremely hard
to treat it similarly to our previous characteristic equations,
which only had two terms. Rather, here we can search for
nontrivial solutions that satisfy this equation.

For instance, consider:

z0 =



0
1
1
0


 ; z =



0
0
0
1




Then:

z0 · z =



0
1
1
0


 ·



0
0
0
1


 =



0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0






0
1
1
0




=




0
−1
−1
0


 = −1



0
1
1
0




As we can see, for these values, if λ = 1, the calculations
check out.

After significantly more trial and error, we see that our
potential nontrivial values of z0 and z, for arbitrary λ1, λ2 ∈
R are limited to:

4
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z0 =




0
λ1

λ1

0


 ; z =




0
0
0
λ2




where:

z0 · z = −λ1λ2z0

Unfortunately, although this is quite promising, since z0
and z are not scalar multiples, these specific elements do not
fulfil our original expectations. However, these elements do
have a name: pseudoscalars, which we will take a look at in
our overall conclusion.

5 Conclusion
We have investigated a variety of number systems that

embraced linear algebra in a more natural manner, by look-
ing at number systems which naturally had column matrices
and vector parts. While the goal was to find a linear group
of numbers, through these investigations, we may conclude
that no such group exists.

5
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1 Exploration of the Basic SIR Model
The basic SIR model consists of three compartments: Sus-

ceptible, Infected, and Recovered. The flow of people in and
out of these three compartments can be summarized by the
diagram I have drawn below:

Figure 1: SIR model

Let’s define some variables and then examine what each
rate is.

First, S, I , and R are the number of people in each of the
respective compartments. Furthermore, S + I + R = N ,
which is the total population we are observing. Next, we
need to define a birth/death rate. We will consider these
equal, and use the variable µ to signify the proportion of peo-
ple that die over a period of time. Last, we use γ to represent

the recovery rate, or the proportion of infected individuals
that recover over a period of time.

With this information, we can say that:

• the instantaneous birth rate is µN
• the death rates out of each compartment are µS, µI , and
µR respectively

• the recovery rate is γI
• the infection rate is βSI

At this point, our definitions raise the question: What is
β? This variable is slightly more complicated than the rest.
In essence, β = kp, where k is the number of interactions
a person makes with a certain population and p is the pro-
portion that the average interaction between a susceptible
individual and an infected individual spreads the infection.

Given the diagram, we can create a set of differential
equations to model this idea.

dS

dt
= birth − death − infection = µN − µS − βSI

dI

dt
= infection − death − recovery = βSI − µI − γI

dR

dt
= recovery − death = γI − µR

From here, there is a lot of additional theoretical analysis
we could do.

For instance, we could derive the basic reproduction rate
(the average number of individuals that each infected indi-
vidual infects). In particular, we can ask ourselves: When
are infections growing? We see that infections are growing
when dI

dt > 0. This gives us:

βSI − µI − γI > 0

βSI > µI + γI

βSI

µI + γI
> 1

βS

µ+ γ
> 1

In fact, this value, βS
µ+γ , is the basic reproduction rate, or

R0. Conceptually, this can be explained by the idea that the
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1 Exploration of the Basic SIR Model
The basic SIR model consists of three compartments: Sus-

ceptible, Infected, and Recovered. The flow of people in and
out of these three compartments can be summarized by the
diagram I have drawn below:

Figure 1: SIR model

Let’s define some variables and then examine what each
rate is.

First, S, I , and R are the number of people in each of the
respective compartments. Furthermore, S + I + R = N ,
which is the total population we are observing. Next, we
need to define a birth/death rate. We will consider these
equal, and use the variable µ to signify the proportion of peo-
ple that die over a period of time. Last, we use γ to represent

the recovery rate, or the proportion of infected individuals
that recover over a period of time.

With this information, we can say that:

• the instantaneous birth rate is µN
• the death rates out of each compartment are µS, µI , and
µR respectively

• the recovery rate is γI
• the infection rate is βSI

At this point, our definitions raise the question: What is
β? This variable is slightly more complicated than the rest.
In essence, β = kp, where k is the number of interactions
a person makes with a certain population and p is the pro-
portion that the average interaction between a susceptible
individual and an infected individual spreads the infection.

Given the diagram, we can create a set of differential
equations to model this idea.

dS

dt
= birth − death − infection = µN − µS − βSI

dI

dt
= infection − death − recovery = βSI − µI − γI

dR

dt
= recovery − death = γI − µR

From here, there is a lot of additional theoretical analysis
we could do.

For instance, we could derive the basic reproduction rate
(the average number of individuals that each infected indi-
vidual infects). In particular, we can ask ourselves: When
are infections growing? We see that infections are growing
when dI

dt > 0. This gives us:

βSI − µI − γI > 0

βSI > µI + γI

βSI

µI + γI
> 1

βS

µ+ γ
> 1

In fact, this value, βS
µ+γ , is the basic reproduction rate, or

R0. Conceptually, this can be explained by the idea that the

rate of infection is growing if each infected person is infect-
ing more than one other individual, just as we see in our
equation.

We could also analyze potential equilibrium states. In par-
ticular, we reach an equilibrium state when dI

dt = 0. This
gives us:

βSI − µI − γI = 0

(βS − µ− γ)I = 0

This implies one of two things, First, when I = 0, there
are no infections, which is known as the disease-free equi-
librium, Second, when we have βS − µ − γ, where there
are still infections, we have what is known as an endemic
equilibrium.

However, these same conclusions can be derived from ob-
serving a linear algebraic model of the SIR model.

2 Applying Linear Algebra to the SIR Model
In order to apply linear algebra to the SIR model, we must

first discretize our differential equations. In order words,
rather than taking instantaneous rates, we may look at the
change in the SIR values over a small, macroscopic period
of time, perhaps a week. Then, we get new equations, iden-
tical before, but using macroscopic rather than infinitesimal
increments:

∆S

∆t
= birth − death − infection = µN − µS − βSI

∆I

∆t
= infection − death − recovery = βSI − µI − γI

∆R

∆t
= recovery − death = γI − µR

Here, one approach would be to find the Jacobian matrix
of the column vector of these differential equations, and then
build the next generation matrix of these differential equa-
tions. However, as we will see later, that does not serve our
purpose of looking at the overall model as a whole, and thus,
we want a simpler linear algebraic model.

The simpler model is to create basic Markov Chain ma-
trix, given the information we know about the changes in the
respective values.

In particular, if we think of each value as its previous
value plus the incremental change (e.g. Sn+1 = Sn+∆Sn),
then we get the equations below.

Sn+1 = Sn + (µN − µS − βSI)∆t

In+1 = In + (βSI − µI − γI)∆t

Rn+1 = Rn + (γI − µR)∆t

One edit we must make is to rewrite the S equation with-
out the constant, giving us:

Sn+1 = Sn + (µI + µR− βSI)∆t

If we consider each rate to be a macroscopic rate rather
than an infinitesimal one, the ∆t term vanishes. Thus, when
represented as a matrix, we obtain the transition matrix:

(
1 µ− βS µ
0 1 + βS − µ− γ 0
0 γ 1− µ

)

We must make one change here. In particular, we see that
we cannot have the βS term inside our matrix, as S will
continue to change. Thus, while this may increase error in
our final model, simply for the sake of our calculations, we
will approximate S to N . This gives us the final transition
matrix of:

(
1 µ− βN µ
0 1 + βN − µ− γ 0
0 γ 1− µ

)

Consider the initial state with a population of N = 1000
and I0 = 2 infected people. Let us approximate values for
the rest of the parameters (note that these values are exag-
gerated for the sake of the simulation). A proportion of ap-
proximately µ = 0.01 people are born and die each week. A
proportion of γ = 0.08 people will recover each week. And,
we can assign k = 0.005 and p = 0.05, giving us a value of
β = 0.0025.

We now get an initial matrix of:

(
998
2
0

)

We get a transition matrix of:

(
1 −2.49 0.01
0 3.41 0
0 0.08 0.99

)

After simulating this disease spread, we get these results
(rounded to the nearest natural numbers):
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1 Exploration of the Basic SIR Model
The basic SIR model consists of three compartments: Sus-

ceptible, Infected, and Recovered. The flow of people in and
out of these three compartments can be summarized by the
diagram I have drawn below:

Figure 1: SIR model

Let’s define some variables and then examine what each
rate is.

First, S, I , and R are the number of people in each of the
respective compartments. Furthermore, S + I + R = N ,
which is the total population we are observing. Next, we
need to define a birth/death rate. We will consider these
equal, and use the variable µ to signify the proportion of peo-
ple that die over a period of time. Last, we use γ to represent

the recovery rate, or the proportion of infected individuals
that recover over a period of time.

With this information, we can say that:

• the instantaneous birth rate is µN
• the death rates out of each compartment are µS, µI , and
µR respectively

• the recovery rate is γI
• the infection rate is βSI

At this point, our definitions raise the question: What is
β? This variable is slightly more complicated than the rest.
In essence, β = kp, where k is the number of interactions
a person makes with a certain population and p is the pro-
portion that the average interaction between a susceptible
individual and an infected individual spreads the infection.

Given the diagram, we can create a set of differential
equations to model this idea.

dS

dt
= birth − death − infection = µN − µS − βSI

dI

dt
= infection − death − recovery = βSI − µI − γI

dR

dt
= recovery − death = γI − µR

From here, there is a lot of additional theoretical analysis
we could do.

For instance, we could derive the basic reproduction rate
(the average number of individuals that each infected indi-
vidual infects). In particular, we can ask ourselves: When
are infections growing? We see that infections are growing
when dI

dt > 0. This gives us:

βSI − µI − γI > 0

βSI > µI + γI

βSI

µI + γI
> 1

βS

µ+ γ
> 1

In fact, this value, βS
µ+γ , is the basic reproduction rate, or

R0. Conceptually, this can be explained by the idea that the
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yrs/wks S I R

0/0 998 2 0

0.5/26 863 90 47

1/52 244 278 479

1.5/78 211 98 691

2/104 298 48 655

2.5/130 376 41 582

3/156 414 53 533

3.5/182 399 74 527

4/208 361 84 554

...
...

...
...

6/312 365 68 567

6.5/338 365 71 564

As we can see, the disease spread to around 65% of the
population, and reached a steady state right around the sixth
year.

Now, let’s use this understanding to develop more sophis-
ticated models.

3 The Infectious Death SIR Model

The first thing we will attempt to do is introduce the idea
of death by infection. In this way, we can quantify exactly
how large the mortality impact of the infection actually was.
Using this, we can compare results across different treat-
ments and solutions.

We introduce this idea by adding an extra compartment,
D, for death by infection.

We can now define a few more variables.

We will call the proportion of infected individuals who
die from the disease (not from natural causes) α. This means
that the rate of flow from I to D is αI .

This is depicted in the diagram below:

Figure 2: SIR model including infectious death

Furthermore, our new differential equations are as fol-
lows:

dS

dt
= birth − death − infection = µN − µS − βSI

dI

dt
= infection − death − infectious death − recovery

= βSI − µI − αI − γI

dR

dt
= recovery − death = γI − µR

dD

dt
= infectious death = αI

Through the method we used before, we can take these
differential equations into linear algebra once again. Our
transition matrix is:



1 µ− βN µ 0
0 1 + βN − µ− α− γ 0 0
0 γ 1− µ 0
0 α 0 1




Using the same values we had last time, but now including
that α = 0.015, we gain a new simulation.

Our initial matrix is once again:



998
2
0
0




However, our transition matrix is now:



1 −2.49 0.01 0
0 3.395 0 0
0 0.08 0.99 0
0 0.015 0 1




With our new model, here are the results:
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yrs/wks S I R D

0/0 998 2 0 0

0.5/26 891 65 36 7

1/52 328 232 364 77

1.5/78 238 77 550 135

2/104 309 28 509 154

2.5/130 389 18 432 162

3/156 450 18 364 169

3.5/182 482 24 317 177

4/208 477 36 299 199

...
...

...
...

...

6/312 391 33 322 241

6.5/338 403 28 303 266

We can see how these results differed slightly from last
time. With the incorporation of the infectious deaths com-
partment, we see a decrease in the number of infectious peo-
ple and recovered people left over (probably because a lot of
them died).

We will use this simulation as a control to measure against
the solutions we propose.

4 The Lockdown SIR Model
The first solution we can look at is putting citizens into

lockdown. What effect does this solution have, and how
should it impact our model. Well, in essence, lockdown does
not help with anything, except for the fact that it decreases
the number of interpersonal interactions in a country. In par-
ticular, this means that k will decrease. Say that the new
value of k is kl, for some lockdown factor l. Then, for our
new value of β, klp = βl.

Our diagram is as follows:
And our differential equations:

dS

dt
= birth − death − infection = µN − µS − βlSI

dI

dt
= infection − death − infectious death − recovery

= βlSI − µI − αI − γI

dR

dt
= recovery − death = γI − µR

dD

dt
= infectious death = αI

Once again, we create a transition Markov Matrix for
these differential equations:



1 µ− βlN µ 0
0 1 + βlN − µ− α− γ 0 0
0 γ 1− µ 0
0 α 0 1




This time, we fix l to be 0.6.

Our initial matrix is then:



998
2
0
0




And our transition matrix is:



1 −1.49 0.01 0
0 2.395 0 0
0 0.08 0.99 0
0 0.015 0 1




Implementing lockdown gives us these results:
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yrs/wks S I R D

0/0 998 2 0 0

0.5/26 985 6 7 2

1/52 950 18 26 6

1.5/78 869 41 73 17

2/104 745 63 155 37

2.5/130 640 61 237 62

3/156 595 43 278 83

3.5/182 596 28 279 97

4/208 616 20 258 106

...
...

...
...

...

6/312 705 11 157 127

6.5/338 715 12 142 131

As we can see, even by just limiting interactions between
people by 40%, lockdown is a solution that can literally
halve the number of potential deaths.

5 The Vaccination SIR Model
The next solution we can look at is implementing vacci-

nation. This can be implemented both at birth and during
people’s lifetimes, so we will assume both happen. In par-
ticular, this has two implications. One, some individuals are
born directly into the recovered compartment as a result of
being vaccinated from birth. Two, individuals who get vacci-
nated during their lifetimes skip over the infected stage and
go directly from susceptible to recovered.

This can be seen in this diagram:

In terms of our equations, there are a few implications.
First, we use the variable ρ to represent the proportion

of individuals who get vaccinated at birth. This gives us a
rate of µ(1 − ρ)N babies being born into the susceptible
compartment and µρN babies being born into the recovered
compartment.

Second, we use the variable ν to represent the propor-
tion of susceptible individuals who choose to get vaccinated
during their lifetime. This gives us a rate of νS individuals
flowing from the susceptible compartment to the recovered
compartment.

Given these changes, here are our new differential equa-
tions:

dS

dt
= birth (w/out vaccine) − death − vaccination − infection

= µ(1− ρ)N − µS − νS − βSI

dI

dt
= infection − death − infectious death − recovery

= βSI − µI − αI − γI

dR

dt
= birth (w vaccine) + vaccination + recovery − death

= µρN + νS + γI − µR

dD

dt
= infectious death = αI

Our transitional Markov Matrix is:




1− ν µ(1− ρ)− βN µ(1− ρ) 0
0 1 + βN − µ− α− γ 0 0

µρ+ ν µρ+ γ 1 + µρ− µ 0
0 α 0 1




Let’s choose values for ρ and ν. At birth, the vaccination
rate can be ρ = 0.009. During a lifetime, the vaccination
rate can be ν = 0.01.

Our initial matrix is still:



998
2
0
0




And our transition matrix is:




0.93 −2.4905 0.0095 0
0 3.395 0 0

0.0705 0.0805 0.9905 0
0 0.015 0 1




These vaccination statistics give us results of:

5

yrs/wks S I R D

0/0 998 2 0 0

0.5/26 744 37 237 5

1/52 422 109 473 36

1.5/78 290 64 623 71

2/104 300 27 640 88

2.5/130 338 14 616 96

3/156 373 9 591 100

3.5/182 400 7 572 103

4/208 420 7 561 106

...
...

...
...

...

6/312 445 11 564 119

6.5/338 443 13 572 123

As we can see once again, these levels of vaccination
prove to be extremely effective in curbing the number of
deaths. Even if only 0.9% of the population gets vaccinated
each week, which means around 750 out of 1000 people over
the course of 2.5 years, we can see massive benefits in terms
of reducing the number of deaths sustained.

6 Combining the Two Solutions

Finally, we can combine the two solutions, as in the dia-
gram below:

Our differential equations:

dS

dt
= birth (w/out vaccine) − death − vaccination − infection

= µ(1− ρ)N − µS − νS − βlSI

dI

dt
= infection − death − infectious death − recovery

= βlSI − µI − αI − γI

dR

dt
= birth (w vaccine) + vaccination + recovery − death

= µρN + νS + γI − µR

dD

dt
= infectious death = αI

Our transitional Markov Matrix:




1− ν µ(1− ρ)− βlN µ(1− ρ) 0
0 1 + βlN − µ− α− γ 0 0

µρ+ ν µρ+ γ 1 + µρ− µ 0
0 α 0 1




Our initial matrix:



998
2
0
0




Our transition matrix:




0.93 −1.4905 0.0095 0
0 2.395 0 0

0.0705 0.0805 0.9905 0
0 0.015 0 1




Finally, our results are:

yrs/wks S I R D

0/0 998 2 0 0

0.5/26 798 4 220 1

1/52 681 5 354 3

1.5/78 613 4 438 5

2/104 576 3 491 6

2.5/130 558 2 523 7

3/156 551 1 545 8

3.5/182 550 0 560 8

6

6    Combining the Two Solutions



62 63

4/208 553 0 572 8

...
...

...
...

...

6/312 577 0 607 8

6.5/338 584 0 615 8

Here, the combination of the two solutions proves to be far
more effective than we could even imagine! This is because
they both prevent the spread of the disease in different ways.
Vaccination increases the number of individuals in the re-
covered compartment, while lockdown decreases the likeli-
hood a susceptible individual will transition into the infected
compartment. This model proves to be quite volatile, as the
rate of infection is directly dependent on the number of in-
fections present. Thus, by containing the number of infected
individuals well from the beginning, we see massive benefits
in the long-run.

7 Conclusion
To conclude, we first saw that we can adapt the SIR model

in a variety of ways to mimic certain events and phenomena,
and we were able to develop a variety of more complex mod-
els in order to analyze potential solutions to the spread of
an infection or disease. Furthermore, we can see that using
methods of lockdown and vaccination to contain the spread
of disease are, in fact, extremely effective, especially when
used in tandem.

I think perhaps the most important part of this project is
the way that it can be translated into real-world applications,
during pandemics and epidemics such as, say, COVID-19.
Because of the adaptability of the SIR model, we can model
the effect of solutions ranging far beyond just vaccination
and lockdown. This means that this model can be an excel-
lent predictor for world crises such as these diseases, and it
amazes me just how much linear algebra and math can be
applied to make an impact.

Sources Used
Here are the range of sources I used in order to understand

this topic:
Purdue University (Differential Equations and Linear Alge-
bra)
Mathematical Association of America (The SIR Model for
Spread of Disease)
Andrew Brouwer (Understanding the Basic Reproduction
Number through Linear Algebra)
Wikipedia (Fundamental Matrix - Linear Differential Equa-
tions)
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Abstract
The Malthusian Population Growth Model has been used for
decades to predict the outcome of a nation’s living standards.
However, many criticize this model, stating that it overlooks
the major technological advancement today. In this paper, we
will provide an introduction to the Malthusian Growth Model,
its pros and cons, as well as an examination of alternate fac-
tors that should be considered when making predictions re-
garding population growth moving forward.
Keywords: Malthusian Checkpoints, population growth
model, linear growth, analysis, predictions

1 Introduction
First observed by Thomas Robert Malthus in the first

edition of his 1798 paper, the Malthusian growth model is
one that has been trusted to demonstrate population stag-
nation for centuries. Malthus’s publication ‘An Essay on
the Principle of Population’ suggested that food production
grows arithmetically while population numbers grow expo-
nentially, stating that ‘Malthusian Checkpoints’ are neces-
sary in order to maintain equilibrium between population
growth and food production. Malthusian Checkpoints, as de-
fined by Malthus’s 1798 publication, categorize means of
population regulation into two: one, positive checks, defined
as checks that promote population regulation through reduc-
ing life expectancy, and two, preventative checks, defined as
checks that lower the fertility rates of a population.

This paper aims to examine the Malthusian Growth Model
and propose an alternative way to illustrate population man-
agement, accounting for other factors influencing population
growth or stagnation. One common critique of the Malthu-
sian Population Growth Model is that it does not account
for modern sustained economic growth in the post-Industrial
Revolution era.

2 Geometric and Linear Growth
The combined equation, F (0) + r2t = P (0)e(r1t) (given

the conditions P0 = P (0) and F0 = F (0) must be satis-
fied), is designed so that its cyclical pattern appropriately
manages population size. ‘r1’ represents the growth rate of
the population density; ‘t’ represents the duration of time;
P (0) represents the initial population density (in counts);
‘r2’ represents the proportion of growth in food production;

F (0) represents the initial amount of food production. We
model this using logarithmic and linear growth, which the
following equations display: P (t) = P (0)e(r1t)andF (t) =
F (0) + r2t.

The significance of the disparities in population growth
versus that of consumer goods is that even throughout the
same time period, the population will become large enough
such that the resources available cannot maintain it. Malthus
argued that the “Malthusian Catastrophe” would occur dur-
ing the intersection of available resources and the popula-
tion, stating that this was where further population growth
would only result in the overexploitation of the economy.

3 Key Terminology
3.1 Neo-Malthusianism

Neo-Malthusianism is a movement that embodied the
panic of the British people following the Black Death in
England. Many used Malthus’s initial hypothesis to advo-
cate in favor of their own policies. The main purpose of Neo-
Malthusianism is to promote population planning; however,
more modern versions of Neo-Malthusianism also discuss
the use of modern contraceptives, straying from Malthus’s
initial commendation of abstinence. Such ideologies that
poverty would only be worsened through charitability and
the increase in the reproduction of the lower class were also
used to implement laws that decreased immigration quotas.

3.2 Preventative Checks
Preventative checks include population management prior

to the “Malthusian Catastrophe,” where resources available
are unable to satisfy population demand. Malthus promoted
abstinence until marriage and laws that punished parents
who had children they could not provide for (ie. schooling,
food, and shelter).

3.3 Positive Checks
Positive checks occur during the Malthusian crisis, or

when nations have already reached excessive economic
strain, ranging from famines to droughts and deathly wars
which limit the life span of citizens. Malthus’s argument
was that as nations reach resource scarcity, the quality of
their healthcare and other essential services decline. This in-
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nately lowers the life expectancy of a population, resulting
in population decline.

4 Malthusian Model Application in the Real
World

The Malthusian population growth model is based on the
idea that population growth will outstrip food production,
leading to a population crash. The model argues that popu-
lation growth will increase at a geometric rate (i.e. 2, 4, 8,
16, etc.) while food production will only increase at an arith-
metic rate (i.e. 2, 4, 6, 8, etc.). This will eventually lead to a
population crash due to starvation and disease. The Malthu-
sian model can be applied to other real-world contexts, in-
cluding population studies, economic analysis, and environ-
mental research.

One of the most common applications of the Malthusian
model is studying population growth in developing coun-
tries. The model can be used to analyze the potential conse-
quences of high population growth rates in these countries,
such as food insecurity, poverty, and environmental degra-
dation. For example, researchers have used the Malthusian
model to study population growth in sub-Saharan Africa,
where population growth rates have been among the high-
est in the world and food production has struggled to keep
pace.

The Malthusian model is also relevant in economic anal-
ysis, which can be used to understand the relationship be-
tween population growth and economic development. For
example, some economists have used the model to study
how population growth affects economic growth and the dis-
tribution of wealth.

In addition, the Malthusian model has been applied in en-
vironmental research, particularly in the study of resource
depletion. The model can be used to understand how popu-
lation growth can strain water, land, and energy availability,
contributing to environmental problems such as deforesta-
tion and pollution.

What’s more, Malthus based his theory on observations of
population growth in his time, particularly in Europe, where
population growth had been increasing rapidly. The Malthu-
sian model was modeled off of historical events marked by
overpopulation, food scarcity, and a high death rate. The
Black Death, which ravaged Europe in the 14th century, and
The Great Famine in Ireland during the 19th century are ex-
amples of such events.

In summary, the Malthusian Population Growth Model
highlights the potential consequences of unchecked popu-
lation growth, and it is still a relevant topic in today’s world.
It has diverse applications in real-world contexts, such as
population studies, economic analysis, and environmental
research.

5 Drawbacks of the Malthusian Population
Growth Model based on Historical

Evidence
The Malthusian population growth model has been used

to explain population growth and its potential consequences

in various real-world situations. However, the model’s pre-
dictions have not always come to pass, and there have been
instances where the model has not been able to predict pop-
ulation growth accurately.

One example of a situation where the Malthusian model
has been used to explain population growth is in sub-
Saharan Africa. In many countries in this region, population
growth has outpaced food production, leading to concerns
about food security. This is consistent with the Malthusian
model’s prediction that population growth will outstrip food
production, leading to a population crash.

Another example of a situation where the Malthusian
model has been used to explain population growth is in
the history of Europe. Some historians have argued that the
Malthusian model can help explain the population crashes
during the Black Death in the 14th century, and the Great
Famine in Ireland in the 19th century. These historical events
fit well with the Malthusian model’s predictions of popula-
tion crashes due to starvation and disease. However, there
are also examples of situations where the Malthusian model
cannot predict population growth accurately. One example
is in developed countries such as Japan and Europe, where
population growth has slowed or even decreased in recent
years. This is inconsistent with the Malthusian model’s pre-
diction that population growth will continue to increase.
Another example is the global population growth in recent
decades, where the availability of birth control and other
family planning has played a crucial role in curbing pop-
ulation growth. This has led to some countries experienc-
ing below-replacement fertility rates, which is also incon-
sistent with the Malthusian model’s prediction of population
growth.

The Malthusian Population Growth Model has been used
to explain population growth and its potential consequences
in various real-world situations. Still, it is not a one-size-fits-
all model, and there are examples where the model’s pre-
dictions have yet to come to pass. The model’s prediction
that population growth will outstrip food production, lead-
ing to a population crash, has been seen in some developing
countries and historical events. Also, it does not consider the
availability of birth control and other forms of family plan-
ning. The model also does not consider the technological
advancement in food production, which has allowed for a
higher food supply.

6 Alternate Models
Although the Malthusian theory of population suggests

a method to analyze the relationship between population
growth and food supplies, it still has some limitations in
its applications. One of the main criticisms is that the the-
ory does not reflect the technological advancements of cur-
rent society. Since the theory roots in early Europe, where
the food supply was unstable, it assumes food availabil-
ity to be the most important factor in population growth.
Malthus failed to predict the technological development that
decreased food insecurity, reducing the correlation between
food availability and population growth. To deal with the
problems that arise from the Malthusian theory, two main
theories of the population were developed.

2

Figure 1: (Source: Top 3 Theories of Population, Kwatiah)

One of the two theories is called the optimum theory of
population. The optimum population is the state in which
given the resources available, produces maximum returns of
income per head.

As shown by the graph, when the population reaches
point M , the per capita income is maximized. Thus, ac-
cording to the optimum theory of population, society will
favor population increase or decrease based on the per capita
income; thus, when the society is underpopulated the so-
ciety will shift to increase its population and vice versa.
Point M changes with the change of any of the following
factors: natural resources, production techniques, stock of
capital, habits of the people, the ratio of the working pop-
ulation, working hours of labor, and modes of business or-
ganizations. To numerically measure how much the current
population deviates from the optimum population, in other
words, Maladjustment, Dalton suggested the following for-
mula: M = A−O

O , when M stands for maladjustment, A
for the actual population, and O for the optimum popu-
lation. When M is positive, the country can be assumed
to be overpopulated and when M is negative, the country
is understood as underpopulated. However, due to the cur-
rent inability to precisely measure the optimum population,
the equation is only used for academic purposes. The opti-
mum theory of population has some superiorities over the
Malthusian theorem. For example, while Malthus suggests a
directly proportional relationship between food supply and
population growth, Canaan, one of the founders of the opti-
mum theory of population growth, related the problem of
the population to both the industrial and agricultural out-
put of the country. Moreover, since the optimum theory of
population growth takes improvements in knowledge and
other advancements into account while deciding the opti-
mum population for the country, the optimum theory of pop-
ulation growth is known to be more practical and applicable
in real life. Yet, there are still limitations to the theory. Since
the optimum population (O) is yet impossible to calculate,
the mathematical model of population growth still remains
vague. Although it may be one of the new theories for pop-
ulation growth with strong theoretical evidence, it still has
some limitations to being practically applied.

The other theory explaining population growth is the the-
ory of demographic transition. The theory of demographic
transition is based on observed population changes in coun-
tries. According to the theory, although the exact numbers
may differ based on how people distinguish phases, there
are about 5 different stages of population change: high sta-

Figure 2: (Source: Top 3 Theories of Population, Kwatiah)

tionary stage, early expanding phase, late expanding phase,
low stationary stage, and declining phase. During the high
stationary stage, also known as the pre-transition stage, both
the birth rate and the mortality rate remain high. As the
stage represents the period before the industrial revolution,
parents who needed more family members to support the
work tended to have more children, while the high mortality
rate due to poor health services kept the population growth
low and stable. Next, during the early expanding phase, also
known as the population explosion stage, the birth rate keeps
on increasing while the death rate decreases. Due to an in-
creased supply of food and improvement in sanitary condi-
tions, death rates started to significantly fall while birth rates
were still kept high due to a need for more workforces in
the family. This stage is often shown in Least Developed
Countries (LDCs). During the late expanding stage, both
the birth rate and the death rate start to decrease. As eco-
nomic conditions got better and the overall education level
started to increase, people started to favor less on having a
child and started spending more time on themselves. How-
ever, there is still a gap between the death rate and the birth
rate during the third stage. Most of the developing countries
are in the third phase. The low stationary stage is when the
birth rates and death rates of countries are approximately the
same. During this stage, the population steadily rises. Most
of the developed countries are in this stage. During the de-
clining phase, mortality rates start to exceed the birth rates
of countries. Due to people’s willingness to have a smaller
family with fewer children, the elderly population increases
while the younger population decreases. The information is
also shown below.

7 Analysis of Different Models
As this population growth theory is based on real-life ev-

idence, it does not have a clear mathematical formula to fol-
low. However, because it reflects how society has changed
over time, it is one of the most well-accepted theories of pop-
ulation growth. In situations where mathematical calcula-
tions are required and exact numbers are asked, the Malthu-
sian theory may be the best theory to follow. However, to
see the real change in population over time in regard to birth
and death rates, the demographic transition might be the best
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theory to rely on.

8 Conclusion: The Future of Malthusian
Theorem

With our ever-evolving world, we may never see a pop-
ulation growth model that perfectly reflects reality; how-
ever, the founding principles of all proposed theories link
two main concepts together—supply and demand. Thomas
Robert Malthus himself referenced the Malthusian check-
point as occurring when the economic strain on the econ-
omy, caused by scarcity, will lead to starvation and war.
Many believe his model still applies in the current day, us-
ing Japan as an example of a nation with more resources than
people that demand it. However, we have also seen it fail un-
der many circumstances. Whether it be in China with mas-
sive unemployment rates despite having more resources than
necessary to maintain its population. Unevenly distributed
wealth and unpredictability in the development of nations
go completely unaccounted for by the Malthusian theorem.
As a result, multiple criticisms of the model have been made
in the current day. Rather than discard the model as a whole,
scientists and politicians should come together in the future
in order to enhance the capabilities of nations’ in population
management.
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Abstract
Due to the rapid development of the Internet throughout the
21st century, researchers now have an abundance of infor-
mation at their fingertips. This overflow of information has
produced many positive consequences—such as providing re-
searchers with more data to analyse, ensuring increased accu-
racy—but also presents several critical challenges, especially
in the field of natural language processing (NLP). This branch
of artificial intelligence centers around the structure of lan-
guage, constructing rules to establish intelligent systems with
the ability to extract meaning from speech and text. A crucial
NLP technique widely used today is latent semantic analysis
(LSA), which dissects the relationships between terms within
a set of documents to produce common topics. LSA estab-
lishes these topics first by analysing word frequencies across
different documents, then by performing singular value de-
composition (SVD). SVD is a crucial step in LSA that per-
forms dimensionality reduction upon the original matrix that
depicts the frequency of each word in each document within
the corpus. The foundation of SVD lies within concepts in
linear algebra—the study of the properties of vector spaces
and matrices—such as matrix factorization, eigenvalues, and
eigenvectors. Linear algebra forms the basis of countless ar-
eas of computer science such as machine learning, image pro-
cessing, natural language processing, and more. This study
aims to investigate the applications of specific linear algebra
concepts within LSA and their limitations. Finally, the study
seeks to extend these applications to gain more insight into
the performance of LSA in broader, real-life contexts such as
within information retrieval through search engines.
Keywords: Natural Language Processing (NLP), Latent
Semantic Analysis (LSA), Singular Value Decomposition
(SVD), eigenvalues, eigenvectors

1 Introduction
1.1 Background and Purpose of Research

The purpose of this paper is to explore the implementa-
tions of linear algebra concepts within latent semantic anal-
ysis in different settings and analyze their limitations. The
growing prevalence of the Internet has produced a rich and
accessible source of data for research in unprecedented de-
grees. As a result, researchers in the field of natural language
processing (NLP) are often able to compile a large collection
of documents—sometimes hundreds of thousands—when
investigating their research questions. However, it is often

the case that researchers are not able to individually under-
stand and analyze each document due to the massive sample
size. This challenge has led to the development of key ma-
chine learning techniques such as topic modeling that are
able to extract topics from a set of documents and classify
documents into clusters based on these topics.

Figure 1: A basic visual representation of topic modeling
processes

The underlying principles of many topic modeling tech-
niques such as latent semantic analysis are rooted in linear
algebra. This paper will examine the step-by-step process
of latent semantic analysis, analyze the extent of the use of
certain linear algebra concepts, and finally, assess the lim-
itations of latent semantic analysis. This paper assumes a
familiarity with basic linear algebra.

2 Explanation of Latent Semantic Analysis
Process

2.1 Basic Principles
Latent semantic analysis is largely founded upon two fun-

damental principles. The first is that the meaning of sen-
tences, documents, and individual words is calculated math-
ematically. The “meaning” of a word is defined as its average
frequency across all of the documents it occurs in, and the
meaning of sentences and documents is defined the sum of
the “meanings” of all of the words they contain. The second

principle states that within LSA, associations between dif-
ferent words and sentences are described implicitly (Foltz,
1996). This means that latent semantic analysis cannot iden-
tify specific topics but is able to organize documents into
clusters containing the most relevance to a specific topic.

Figure 2: A diagram depicting the transition between a scat-
tered collection of documents to organized document clus-
ters.

2.2 Initial Steps
The first step when performing LSA is to construct a term-

document frequency matrix. The rows are represented by
each unique word, and the columns are represented by each
document within the corpus. The entry at the intersection
of row i and column j will be represented by the term fre-
quency value of word i within document j. This frequency
can be calculated in multiple ways, but the preferred method
is to use Term Frequency-Inverse Document Frequency.

wi,j = tfi,j × log(
N

dfi
)

The equation above describes the method used in latent
semantic analysis to calculate the Term Frequency-Inverse
Document Frequency (TF-IDF) score, which is the prod-
uct two statistics: term frequency and inverse document fre-
quency. tfi,j represents term frequency (TF) and log( N

dfi
)

represents inverse document frequency (IDF). tfi,j denotes
the raw number of occurrences of word i in document j,
dfi denotes the number of documents containing word i,
and N denotes the total number of documents within the
dataset. Since the term frequency counts only the number
of occurrences of a word within each document, the inverse
document frequency was incorporated to offset the incor-
rect emphasis that may be placed on common words such as
“a,” “an,” “the,” “she,” and “they” without giving sufficient
weight to more meaningful words. This is because higher
frequency does not always warrant higher significance (Kaur
& Kaur, 2021).

The inverse document frequency is obtained by taking the
logarithm of the result when dividing the total number of
documents by the number of documents containing the term.
It is important to note that this quotient (Ndfi) will always
be greater than or equal to 1; as a result, the IDF and TF-IDF
score will approach 0 as the term appears in more documents
and the quotient approaches 1.

Overall, the TF-IDF score places weights on words based
on their rarity, ensuring that more significance is placed
upon the words that occur frequently within a document
but infrequently across the corpus, or the entire set of docu-
ments. A high TF-IDF score is achieved if the term appears
frequently in a specific document but less frequently across
the whole collection of documents.

2.3 Singular Value Decomposition
The next step of LSA involves reducing the dimensions

of the term-document frequency matrix. This is an impor-
tant step of the process because large, complex data sets
often contain higher dimensions that are more difficult for
the computer to process and interpret (“Singular value de-
composition”, 2017). SVD is a process that can optimize the
amount of information preserved within the matrix while
still lowering the dimension to enable faster and more ac-
curate analysis. The decomposition can be expressed in the
form A = UΣVT , where U and V are orthogonal matrices
and Σ is a diagonal matrix.

Figure 3: A representation of the process of SVD leading up
to dimensionality reduction

U and V represent rotations and Σ represents a dilation
in each coordinate direction. Rotations and dilations are ex-
amples of linear transformations and are utilized in SVD to
reconfigure the dimensions of the original term-document
frequency matrix. By the definition of an orthogonal ma-
trix, UT = U−1 (the inverse of U) and VT = V−1. SVD
is a crucial step within the process of topic modelling be-
cause large, complex data sets often contain higher dimen-
sions, making them sparse; they are also noisy, meaning that
they contain many low-frequency words. These characteris-
tics make it more difficult for the computer to process and in-
terpret the documents to produce a common set of topics and
document clusters. SVD optimizes the preservation of valu-
able information while reducing dimensions for faster, more
accurate analysis (Kherwa & Bansal, 2017). We are able to
find matrix U by finding the diagonalizations of ATA:

2
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AAT = (UΣVT)(UΣVT)T

= (UΣVT)(VΣTUT)

= U(ΣΣT)UT

= U(ΣΣT)U−1

First, the eigenvalues must be derived using the following
equation: det(A−λI) = 0. After finding the corresponding
eigenvectors, they must be organized in descending order.
The columns of U will be the eigenvectors of A. The eigen-
vectors must also be normalized, meaning that each term in
the vector should be divided by the vector’s magnitude to
scale it to an eigenvector that has a unit length of 1. Next, we
can find Σ : the diagonal entries are equivalent to the posi-
tive square root of the eigenvalues organized in descending
order.

Finally, V can be found using the following equation:

A = UΣVT

−→ AV = UΣVTV

−→ AV = U

−→ V = A−1UΣ

The vectors of V must also be normalized.
Let’s say we have the following matrix:

A =

(
3 2
4 1

)

The first step would be to find the diagonalizations of
AAT and ATA to find matrices U and V, respectively.

A ·AT =

(
25 10
10 5

)

AT ·A =

(
13 14
14 7

)

The characteristic polynomial of AAT is the following:

(13− λ)(17− λ)− 14× 14 = 0

221− 30λ+ λ2 − 196 = 0

λ2 − 30λ+ 25 = 0

Using the quadratic formula, we can deduce that the
eigenvalues of AAT are 5(3+22) and 5(3-22). The corre-
sponding eigenvectors are the following:

(
− 1 + 5

√
2

7

)(
− 1− 5

√
2

7

)

Arranging the eigenvalues in descending order, we arrive
at the following matrix for U (this is before normalizing):

(
−1 + 5

√
2 −1− 5

√
2

7 7

)

After normalizing, we get the following final matrix for U:

(
0.65520174 −0.75545396
0.75545396 0.65520174

)

The diagonal entries of Σ will be equivalent to the square
roots of the two positive eigenvalues (which were 5(3+) and
5(3-)) in descending order:

(
5.39834564 0

0 0.92620968

)

Finally, we find V using the fact that V = A−1UΣ, then
normalize:

(
0.92388 0.382683
0.382683 −0.92388

)

Now that we have all three matrices—U, V, and Σ—we
will be able to construct our SVD factorization (UΣVT ) of
matrix A:

(
0.65520174 −0.75545396
0.75545396 0.65520174

)(
5.39834564 0

0 0.92620968

)

(
0.92388 0.382683
0.382683 −0.92388

)

3 Application of LSA
3.1 Walkthrough

To apply these concepts in a real-life, a dataset on Kaggle
was chosen that contained information about various news
articles across a range of media outlets—including the New
York Times, CNN, and more—from the years 2016 to 2017.
The features of the dataset included the ID, title, publication,
author, date, year, month, URL, and full text of each article.

Figure 4: Publications represented within dataset

For the analysis, the main focus was on the “title” and
“content” columns, as these were the columns that contained
information most relevant to the topics covered within the
article. Before constructing the word frequency matrix, the
dataset was pre-processed to remove extraneous information
such as punctuation, numbers, or articles (eg. ‘a’) that do not
contribute meaning to the article’s content and risk hindering
accuracy of analysis.

3

Figure 5: Dataset representation within Jupyter notebook

1 stop_words = set(stopwords.words(’
english’))

2 newHeadlines = []
3
4 for x in headlines:
5 x = x.lower()
6 x = x.replace(" ", "")
7 x = x.replace(" ", "")
8 for character in string.punctuation:
9 x = x.replace(character, ’’)

10 x = x.replace("the new york times",
’’)

11 x = ’’.join(c for c in x if not c.
isdigit())

12 x = x.strip()
13 newHeadlines.append(x)

Afterward, the next step was to construct the term fre-
quency matrix and perform the SVD factorization, respec-
tively. This was achieved by using the built-in functions of
the Scikit Learn library, a Python library that contains many
useful machine learning tools such as dimensionality reduc-
tion, regression, and more.

1 tfidfvectorizer = TfidfVectorizer(
analyzer=’word’,stop_words= ’english’
)

2 tfidf_wm = tfidfvectorizer.fit_transform
(df[’New Headlines’])

3 tfidfvectorizer1 = TfidfVectorizer(
analyzer=’word’,stop_words= ’english’
)

4 tfidf_wm1 = tfidfvectorizer1.
fit_transform(df[’New Content’])

5 svd = TruncatedSVD(n_components=100)
6 lsa = svd.fit_transform(tfidf_wm)
After constructing the term-document matrices, we can

observe the features—the unique words that comprise the
rows of the matrices. The features can be derived using the
code below.

Figure 6: Constructing the term-document frequency matrix
containing the TF-IDF scores for each term within the Title
and Content columns

1 dictionary = tfidfvectorizer.
get_feature_names()

2 print(dictionary)

3.2 Results
Afterward, document clusters were identified by imple-

menting additional code. Before observing the clusters, the
silhouette scores of the clusters were reviewed to confirm
how effectively the document clusters were created. Viewing
the silhouette scores enables us to assess the performance of
the LSA model on the dataset and determine whether spe-
cific conditions (such as those in pre-processing) must be
adjusted to obtain the desired degree of accuracy.

1 s_list = []
2
3 for clus in tqdm(range(2,21)):
4
5 km = KMeans(n_clusters=clus, n_init

=50, max_iter=1000) # Instantiate
KMeans clustering

6
7 km.fit(lsa) # Run KMeans clustering
8
9 s = silhouette_score(lsa, km.labels_

)
10
11 s_list.append(s)
12 plt.plot(range(2,21), s_list)
13 plt.show()

Figure 7: Silhouette score plot

This plot shows that most of the silhouette scores are
on the higher end of the scale, suggesting that most of the
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clusters are linearly separable or there is little to moderate
amount of overlaps among them. To verify this result, a T-
distributed Stochastic Neighbor Embedding (TSNE) scatter-
plot was created. A TSNE scatterplot enables us to view
higher-dimensional data in a low dimensional space—in
this case, two-dimensional since the plot contains two
axes—while preserving the overall structure. This means
that similar points that are close to each other in the higher-
dimensional space will also be close together in the TSNE
scatterplot.

Figure 8: TSNE scatterplot

Although most of the clusters are represented with the
color pink, making the distinctions between clusters a bit
difficult to discern, it can be seen that most of the clusters
are organized in an orderly manner of circular shapes rather
than being spread out. Figure 9, which depicts LSA per-
formed upon a very small set of documents (therefore direct
topic assignment was possible), illustrates this difference; it
can be observed that while the documents pertaining to the
green, purple, blue, and red topics are clustered in a rela-
tively orderly way, the documents pertaining to the orange
topic are very spread out. This explains the reason why the
majority of the silhouette scores for this dataset are on the
lower end of the scale.

Figure 9: Sample TSNE plot with low silhouette score

3.3 Limitations of LSA
A key limitation of LSA is that it does not determine spe-

cific topics from a set of documents as it is an unsupervised
algorithm. As a result, it is mainly utilized to cluster similar
documents together. Additional topic modeling techniques
that are newer to the field of NLP such as BERTopic lever-
ages TF-IDF to create easily interpretable topics and key-
words within each topic description. The BERTopic tech-
nique was utilized to conduct a more in-depth analysis of the

dataset and verify the accuracy of the visualizations created
above (Appendix).

4 Extension
4.1 Walkthrough

In order to extend this application and investigate a com-
mon real-life use of LSA—information retrieval through
search engines—a search engine was created based on the
same dataset. LSA is an ideal technique to utilize for creat-
ing search engines as it does not rely on keyword searches,
meaning that only results containing the literal keywords in-
putted into the search engine will appear, but rather on se-
mantic searches. This allows the search engine to return rel-
evant results without necessarily containing the exact words
inputted.

Using the term-document matrix for the ‘content’ col-
umn that was created previously in the Application section,
a word cloud was constructed to observe the words that oc-
curred the most often.

Figure 10: Word Cloud

To begin creating the search engine, a function called
search results was constructed. This function involved using
the term-document matrices containing each term’s TF-IDF
score for each document to compile a list of the articles that
contained words with the highest similarity to those within
the search query.

The Python library primarily used for this extension
was Gensim, which contains numerous functions for docu-
ment indexing, topic modeling, and similarity retrieval with
large corpora. The MatrixSimilarity function seen below
calculates the similarity of each feature—terms and docu-
ments—within the corpus against the other and stores this
information in an index matrix; we will use this matrix later
to compare the similarities of the words within our search
query to these features.

1 from gensim.similarities import
MatrixSimilarity

2 articleIndex = MatrixSimilarity(lsa1,
num_features = lsa1.num_terms)

After writing the code that would analyse the terms within
the search query and fetch the most relevant articles (by
identifying the terms within the TF-IDF term-document ma-
trix then using the results to investigate the similarities of
the terms to other terms and documents through the index
matrix), the search engine printed the list of the five most
relevant articles along with the percentage of relevance us-
ing the similarity value from the index matrix.

5

4.2 Results
The following figure depicts a sample query and its search

results from the search engine. Although some of the articles
did not explicitly contain the words within the queries, these
articles still came up as results because they contained the
words most similar to the words in the query.

Figure 11: Search engine performance

Upon a further investigation into these results by reading
the article content, it was observed that all of the articles
were sufficiently relevant to the inputted search queries. To
further test the performance of the search engine, however,
it may be beneficial to input longer, more complex phrases
(eg. “impact of controversial art on galleries nationwide”,
“statistics of hate crimes”, etc.) to observe whether the re-
sults are relevant not only to the specific words within the
query but the overall meaning of the query.

5 Conclusion
5.1 Summary

In summary, eigenvalues and eigenvectors have numerous
applications within the field of Natural Language Process-
ing that form the basis of LSA, a prominent topic modelling
technique. Singular Value Decomposition is a key process
based upon linear algebra concepts that is utilized within
LSA to perform dimensionality. LSA has several important
advantages and disadvantages. By analysing a reduced rep-
resentation of the original term-document frequency matrix
(through SVD) that preserves the correlation of terms be-
tween documents, LSA is able to ensure the accuracy of its
analysis to some extent. However, some disadvantages are
that LSA is not able to explicitly describe topics within the
corpus and that its accuracy can diminish overtime as the
size of the corpus increases. Some limitations of this investi-
gation are that additional applications of linear algebra con-
cepts in topic modelling such as Non-negative Matrix Fac-
torization (NMF) were not covered in detail. The evaluation
of the search engine results could also have been more com-
prehensive by investigating the search engine’s performance
based on more diverse (eg. in length, complexity, and topic)
search queries. The field of textual analysis is ever-evolving,
and there are numerous complex and innovative methods re-
garding the automation of this analysis that can be explored.
In future studies, I would like to dive further into NMF and
experiment with using different search queries on search en-
gines created using LSA to overcome the limitations within
the investigation of the current study.
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6 Appendix

Figure A1: Plot representing similarities between topics
It can be observed that the clusters of topics are
well-organized, which aligns with the high silhouette scores
that we arrived at previously using LSA. The bar chart
below shows the most common topics and their keywords.
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Figure A2: Common topics bar chart
For example, we can infer that Topic 0 is related to
healthcare, Topic 2 is related to police and/or police
violence, Topic 3 is related to firearms and firearm-related
policies, and so on.
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Abstract

In applied mathematics, topological data analysis (TDA) uti-
lizes concepts from topology to extract qualitative features
from data such as its shape. TDA has a variety of approaches
to extract structure from unstructured data, or point clouds,
and it is well-suited for high-dimensional and noisy data sets.
Point clouds are a finite set of points within the data, and
persistent homology is used to represent the data as a sim-
plicial complex: a complex of simplexes, or triangles gen-
eralized in multidimensional spaces. The first step of TDA
involves repeatedly using filtration on the point cloud to ar-
rive at a filtered complex. Second, the key topological fea-
tures of the filtered complex—the number of connected com-
ponents and holes—are analyzed through persistent homol-
ogy. Finally, the timeline of the birth and death of topological
features throughout the process of filtration is displayed in a
persistent diagram. The computation of persistent homology
is a fast-evolving area with numerous intriguing challenges;
new algorithms and software implementations in the field are
being updated and released rapidly. Premised on the idea that
the shape of data sets contains relevant information, TDA rep-
resents a promising bridge between topology and data science
that warrants further exploration.
Keywords: Topological Data Analysis (TDA), point cloud,
simplicial complex, Vietoris-Rips complex, persistent homol-
ogy, persistence diagram, filtration, vectorization methods

1 Introduction
1.1 Background and Purpose of Research

This paper explores topological data analysis, an on-the-
rise data science tool, and its applications in machine learn-
ing. The growing prevalence of the Internet has produced
a rich and accessible source of data for research to un-
precedented degrees. The application of persistent homol-
ogy in data science provides a robust theoretical foundation
for a mathematically rigorous analysis of shape within data
(Carlsson, 2009). The shape of the data can be interpreted
in several forms depending on the type of data. For exam-
ple, let’s say we have data consisting of a finite number of
points scattered in the coordinate space; you naturally start
thinking about how these points are roughly shaped or clus-
tered. This is similar to how we look up at the stars in the
night sky and see constellations in the shapes of polar bears

Figure 1: Geo-referenced point cloud of Red Rocks, Col-
orado

or scorpions. That is because it is one of our human tenden-
cies to extract familiar, meaningful shapes from seemingly
random and scattered data. Here is another example: if you
have handwritten image data, you can envision characteris-
tics such as how many holes there are in the numbers. TDA
aims to encode the persistent homology of a dataset in an ac-
cessible visual representation called the persistent diagram.
The principles of topological data analysis are rooted in per-
sistent homology and the premise that the shape of a dataset
contains relevant information. This paper will examine the
framework of TDA, provide examples of TDA results on
various datasets, and analyze its applications in machine
learning along with its limitations.

2 Key Definitions
2.1 Point Clouds

Let’s say our data is given as a finite set of points in Eu-
clidean space Rd. We call this set of points a point cloud.
For example, a set containing each reflection of a laser pulse
from a lidar forms a 3-dimensional point cloud with (x, y,
z) coordinates. A set of points might appear to be randomly
scattered on the surface, but there might be some hidden ge-
ometric, or topological patterns. Ultimately, TDA uses ho-
mology to answer meaningful questions such as ‘How can
we identify geometric features from data?’ and ‘How do we
know that these geometric features are significant?’

2.2 Simplicial Complex
A simplex is the generalization of a triangle, the funda-

mental shape of geometry, in multidimensional spaces. For
example, a 0-simplex is a point, a 1-simplex a line, a 2-
simplex a triangle, a 3-simplex a tetrahedron, and so on (Ko-
plik, 2022). Within TDA, we can use persistent homology

Figure 2: (Talebi, 2022)

to translate data into a collection of triangles: a simplicial
complex. The formal definition of a simplicial complex is as
follows, satisfying the two conditions below: Every face of
a simplex from K is also in K. The non-empty intersection
of any two simplices ϵ1, ϵ2 in K is a face of both ϵ1 and ϵ2.

When performing TDA, we use the following steps to
transform the dataset into a simplicial complex. First, we
plot our data in an N-dimensional space, with a dimension
for each unique variable. Second, we choose a radius ϵ and
draw an N-dimensional ball of radius ϵ around each data
point in the point cloud. Third, if two balls overlap we con-
nect the corresponding points with a line, or a 1-simplex.
If three balls overlap, we fill in the area between them to
form a triangle, or a 2-simplex. This continues in the same
pattern for subsequent intersections and simplices. Through
the simplicial complex, we can derive the homology group,
composed of connected components, holes, and cavities. H0

commonly represents the group of connected components,
H1 the group of holes, and H2 the group of cavities. A
natural question arises: How are we supposed to know the
best radius at the outset? This is where persistent homology
comes in.

2.3 Vietoris-Rips Complex
The Vietoris-Rips Complex is a way of forming a topolog-

ical space from distances in a set of points (Garin & Tauzin,
2019). In other words, we create a simplicial complex that
can be defined from any distance δ by forming a simplex
for every finite set of points in the data that has a diameter
at most δ. Formally, we construct a Vietoris-Rips complex
through the following process:
1. Draw a circle around each point with a radius of ϵ.
2. If ϵ is greater than the distance between points i and j in

the point cloud, in other words, if the intersection of two
circles includes both their centers, we connect the two
center points with a line segment.

3. If three points form a triangle, we fill in the area to create
a 2-simplex.

Below, we will create a plot of our own to analyze through
TDA. First, we use Numpy array to generate 8 random
points for our point cloud.

Looking at this chart, we can think about what geomet-
ric intuition we can gain from the collection of points. For
example, it may appear that the four dots clustered at the
top left of the plot are going to form a square. In this way,

Figure 3: Evolving Complex

Figure 4: Randomly generated eight point plot

humans strive to extract familiar geometric shapes from ran-
dom collections by connecting points that are close to each
other. The approximation of topological space from the point
cloud with this simple idea is called the Vietoris-Rips Com-
plex.

Figure 5: Transformation of the Vietoris Rips Complex

The screenshots above showcase the transformation of the
simplicial complex as the epsilon value gets larger: overlap
increases, and more connected components (H0) and holes
(H1) are birthed in the complex. It can be observed from the
diagrams that triangles and edges appear, merge, and disap-
pear with the change of epsilon. Additionally, the total num-
ber of components decreases over time; if ϵ is sufficiently
large, there will only be one united connected component
remaining in the simplex. In summary, the number of com-
ponents and holes can be important indicators of key geo-
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metric features, and we can obtain them by computing the
homology of the complex.

By visualizing the complexes, we are able to gain geomet-
ric intuition. However, it is difficult to determine which ep-
silon value best represents the shape of data merely through
observation. For every epsilon, we must be able to sum-
marize how the number of components and holes are be-
ing changed. Persistent homology, an algebraic method for
computing topological features in a space, allows us to do
this (Otter et al., 2017). It is the concept of measuring which
features are born and die from the complex as the epsilon
value, or radius, changes. Persistent homology is the primary
method used in TDA to study qualitative features of data
that persist across multiple scales. It has many advantages
as well; it is robust to perturbations of input data, indepen-
dent of dimensions and coordinates, and provides a compact
representation of the qualitative features of the input.

3 TDA Framework
3.1 Filtration

The initial step of TDA is to repeatedly use filtration to ar-
rive at a filtered complex. Filtration is defined as the process
of adjusting the parameter of epsilon, or the radius, to assess
changes in the dataset. Filtration has numerous applications
in real life, including height filtration on images. Performing
height filtration allows us to conduct image segmentation.
For example, in the picture of wood cells below, we can use
height filtration to extract the connected components (in this
case, individual cells) from the image. Although imperfect,
this algorithm has a high level of accuracy; this is impressive
considering only a few parameters, such as the blur parame-
ter, need to be adjusted.

Figure 6: Original Wood Cell Image

Figure 7: Blurred image with 1 dimension of color

Figure 8: Connected Components

Figure 9: First Point Cloud

Figure 10: Second Point Cloud

3.2 Persistence Diagram
A persistent diagram represents the birth and death of

connected components and holes of a Vietoris-Rips com-
plex throughout the change of epsilon. In order to construct
the diagram, persistent homology tracks when two balls of
radius epsilon, each centered around a point on the point
cloud, intersect. A point is added to the diagram when the
ball in one connected component first intersects a ball of
another connected component, because the merging of two
connected components signifies the death of one of them.
The final remaining simplex dies at infinity. A point located
near the diagonal means that this feature died almost im-
mediately after it was born. In other words, this means that
the further the feature is located above the diagonal, the
greater its persistence. High persistence features are gener-
ally thought to be statistically significant, while lower per-
sistence features more representative of statistical noise.

Comparing Two Persistent Diagrams (bottleneck/Wasser-
stein distance) When comparing the persistent diagrams of
two point clouds, we are able to utilize metrics such as the
Wasserstein distance. The Wasserstein distance is a distance
function between probability distributions on a particular
metric space M. This metric compares the probability dis-
tributions of two different variables, where one variable is
derived from the other by random or deterministic perturba-
tions.

Now, we will try experimenting with using TDA and per-
sistence diagrams to discriminate between two point clouds
extracted from distributions that look similar to the naked
eye but are, in reality, completely different.

The first point cloud consists of 200 points extracted from
a Gaussian normal distribution. Therefore, statistically, the
geometric information of this point cloud will be similar to
the geometric information that a normal distribution surface
would have.

The second point cloud consists of 200 points scattered by
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Figure 11: Persistent diagram of first point cloud

Figure 12: Persistent diagram of second point cloud

first randomly selecting 200 angles and applying constant
noise to two adjacent circles. Although these point clouds
were created differently, it’s difficult to distinguish between
the two point clouds to determine which was created through
which distribution. Now we will see if we can observe a dis-
tinct pattern within their respective persistent diagrams. One
difference that can be observed is that in the second persis-
tent diagram, unlike the first, the persistence of the H1 group
is especially strong.

Regarding the application of persistent diagrams in ma-
chine learning, however, persistent diagrams aren’t suitable
for use as input vectors because the number of points con-
stituting the diagram will differ depending on the image. In
other words, each data set will be represented as a vector of a
different dimension. As a result, it is necessary to transform
the persistent diagram into a vector of some fixed dimension
by using vectorization methods such as HeatKernel.

4 Sample Application in Machine Learning
Vectorization Methods (HeatKernel) One vectorization

method often used in TDA is HeatKernel. Given a persis-
tence diagram made up of the triples [b, d, q] representing
birth-death-dimension, subdiagrams corresponding to vari-
ous homology dimensions are taken into account individu-
ally and seen as sums of Dirac deltas. Then, a rectangular
grid of locations uniformly sampled from suitable ranges
of the filtering parameter is used to perform the convolu-
tion using a Gaussian kernel. The reflected pictures of the
subdiagrams around the diagonal are processed in the same
way, and the difference between the outputs of the two con-
volutions is computed. A (multi-channel) raster picture can
be compared to the outcome. Machine Learning Pipeline
MNIST: Binarization → Filtration → Persistent Diagram
This pipeline uses a mix of various filtering, distance met-
rics (eg. Wasserstein, bottleneck), and vectorization methods
including HeatKernel. This pipeline can be used to perform

efficient machine learning and TDA analysis on the training
data. What’s noteworthy is that when we use this pipeline,
we’re no longer using any information from the image pixels
themselves. Instead, we’re only using the topological fea-
tures of the image data seen from multiple perspectives.

5 Conclusion
In conclusion, persistent homology has many applications

in data science. Persistent homology is the primary method
used in TDA to study qualitative features of data that per-
sist across multiple scales. It has a lot of advantages too; it’s
robust to perturbations of input data, independent of dimen-
sions and coordinates, and provides a compact representa-
tion of the qualitative features of the input. For future work, I
would like to dive deeper into the mathematical background
of persistent homology along with the various applications
of TDA in real life.
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Abstract

In the economic theory of two-sided many-to-one matching, a
particular problem of interest is the mechanism of school as-
signment. Ever since the deferred acceptance algorithm was
first proposed by Gale and Shapley (1962), there has been
much research about mechanisms that optimally match stu-
dents to schools in real-world situations. Pathak and Sön-
mez (2013) tried to incorporate truncated preferences into the
existing matching framework, whereas Hafalir, Yenmez and
Yildirim (2013) considered reserves for minority students. In
this paper, we explore the relatively undeveloped area of trun-
cated preferences in school matching with minority reserves.
Specifically, we present a novel framework for mechanism
analysis with minority reserves and compare mechanisms by
their stability, Pareto optimality, and vulnerability to manip-
ulation. Our results show that the old Chicago mechanism is
at least as manipulable as any other stable mechanism and is
strictly more manipulable than the serial-dictatorship mecha-
nism.
Keywords: Gale-Shapley algorithm, market design, mecha-
nism design, school choice, truncated preferences

1 Introduction
Given a set of men and women whose preferences are in

the opposite gender, how should we form pairs such that no
agent has the incentive to rematch? This question was orig-
inally proposed and answered by Gale and Shapley in 1962;
since then, the solutions to the variants of the question have
been applied to school choice, medical residency matching,
and the assignment of cadets to military branches. Gale and
Shapley tried to find a one-to-one stable matching (a set of
pairings in which (1) all men and women find their partners
acceptable and (2) no man/woman pair prefers each other to
their assigned partners). By a process called the deferred ac-
ceptance algorithm, Gale and Shapley proved that a stable
matching exists for any finite set of men and women and their
preferences. The algorithm is described as follows:
1) Each man proposes to his most preferred woman. Each

woman selects her most preferred man out of those who
proposed to her and puts him on her waiting list; the rest
are rejected.

2) Each man that was rejected proposes to his next pre-
ferred woman. Each woman selects her most preferred

man among those that proposed to her, including the man
on the waiting list.

3) Repeat Step 2 until no men who are available to propose
are left.

Gale and Shapley proved that the matching obtained at the
termination of the algorithm is stable. For example, consider
the following situation with 5 men and 4 women:

𝑝𝑝(𝑚𝑚1) = 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, 𝑤𝑤4, 𝑚𝑚1
𝑝𝑝(𝑚𝑚2) = 𝑤𝑤4, 𝑤𝑤2, 𝑤𝑤3, 𝑤𝑤1, 𝑚𝑚2
𝑝𝑝(𝑚𝑚3) = 𝑤𝑤4, 𝑤𝑤3, 𝑤𝑤1, 𝑤𝑤2, 𝑚𝑚3
𝑝𝑝(𝑚𝑚4) = 𝑤𝑤1, 𝑤𝑤4, 𝑤𝑤3, 𝑤𝑤2, 𝑚𝑚4
𝑝𝑝(𝑚𝑚5) = 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤4, 𝑚𝑚5,⬚

𝑃𝑃 (𝑚𝑚𝑖𝑖) denotes the preference relation of 𝑚𝑚𝑖𝑖: for instance,
𝑚𝑚5 prefers 𝑤𝑤1 over 𝑤𝑤2, 𝑤𝑤2 over 𝑤𝑤4, and 𝑤𝑤4 over staying sin-
gle. 𝑚𝑚5 would rather stay single than be matched with 𝑤𝑤3 or
𝑤𝑤5. Assume that the preferences of the women are as follows:

𝑝𝑝(𝑤𝑤1) = 𝑚𝑚2, 𝑚𝑚3, 𝑚𝑚1, 𝑚𝑚4, 𝑚𝑚5, 𝑤𝑤1
𝑝𝑝(𝑤𝑤2) = 𝑚𝑚3, 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚4, 𝑚𝑚5, 𝑤𝑤2
𝑝𝑝(𝑤𝑤3) = 𝑚𝑚5, 𝑚𝑚4, 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3, 𝑤𝑤3
𝑝𝑝(𝑤𝑤4) = 𝑚𝑚1, 𝑚𝑚4, 𝑚𝑚5, 𝑚𝑚2, 𝑚𝑚3, 𝑤𝑤4

If we apply the deferred acceptance algorithm to this spe-
cific example,
1. 𝑚𝑚1, 𝑚𝑚4, and 𝑚𝑚5 propose to 𝑤𝑤1, who only holds 𝑚𝑚1; 𝑚𝑚2

and 𝑚𝑚3 propose to 𝑤𝑤4, who only holds 𝑚𝑚2. This yields a
tentative matching

(

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4
𝑚𝑚1 ⬚ ⬚ 𝑚𝑚2

)

2. 𝑚𝑚3, 𝑚𝑚4, and 𝑚𝑚5 propose to 𝑤𝑤3, 𝑤𝑤4, and 𝑤𝑤2, respectively;
𝑤𝑤4 rejects 𝑚𝑚2 and holds 𝑚𝑚4. The tentative matching is
thus revised to

(

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4
𝑚𝑚1 𝑚𝑚5 𝑚𝑚3 𝑚𝑚4

)
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3. 𝑚𝑚2 proposes to 𝑤𝑤2, who rejects 𝑚𝑚5 and holds 𝑚𝑚2. The
tentative matching is thus revised to

(

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4
𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4

)

4. 𝑚𝑚5 proposes to 𝑤𝑤4, who rejects 𝑚𝑚5 and holds 𝑚𝑚4, which
stops the procedure and results in

(

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 (𝑚𝑚5)
𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4 (𝑚𝑚5)

)

In addition, each man weakly prefers his match under the
deferred acceptance algorithm compared to any other woman
that he could have been matched to in another stable match-
ing. Additional properties of the deferred acceptance algo-
rithm include Pareto optimality, which describes the exis-
tence of a matching where there is no other matching that
makes some agents better off without making anyone worse
off, and manipulability, which is equivalent to an agent’s abil-
ity to profit from a mechanism by misrepresenting his pref-
erences.

1.1 Introduction to School Choice Context
An interesting application of the deferred acceptance al-

gorithm is that many of its consequences can be extended to
many-to-one matchings; examples include situations where
an agent on one side is matched to more than one agent on
the other side, such as the internship assignment problem or
college admission problem.

Applications of matchings in school choice have been
made to mimic real-life scenarios. Ehlers, Hafalir, Yenmez,
and Yildirim studied controlled choice over public schools;
Benabbou, Chakraborty, Ho, Sliwinski, and Zick investi-
gated the impact of diversity constraints on public housing
allocation. Pathak and Sönmez compared various mecha-
nisms by their susceptibility to manipulation.

This paper is structured as follows. In Section 2, we will
compare multiple matching algorithms that are known to
record truncated preferences under diversity situations. More
specifically, we will be discussing factors including stable-
ness, manipulability, and Pareto optimality for each mecha-
nism.

2 General Framework
We first start with some traditional definitions often used

in the market design theory of school choice.

1. a finite set of students 𝐴𝐴 = 𝑎𝑎1, ..., 𝑎𝑎𝑛𝑛;
2. a finite set of schools 𝐶𝐶 = 𝑐𝑐1, ..., 𝑐𝑐𝑚𝑚;
3. a capacity vector q = (𝑞𝑞𝑐𝑐1 , ..., 𝑞𝑞𝑐𝑐𝑚𝑚 ), where 𝑞𝑞𝑐𝑐 is the capacity

of school 𝑐𝑐 ∈ 𝐶𝐶 or the number of seats in 𝑐𝑐 ∈ 𝐶𝐶;
4. a students’ preference profile 𝑃𝑃𝐴𝐴 = (𝑃𝑃𝑎𝑎1 , ..., 𝑃𝑃𝑎𝑎𝑛𝑛 ), where

𝑃𝑃𝐴𝐴 is the strict preference relation of student 𝑎𝑎 ∈ 𝐴𝐴 over
𝐶𝐶 . In other words, 𝑐𝑐𝑃𝑃𝑎𝑎𝑐𝑐′ means that student 𝑎𝑎 strictly
prefers school 𝑐𝑐 to school 𝑐𝑐′;

5. a schools’ priority profile ≻𝐶𝐶= (≻𝑐𝑐1 , ..., ≻𝑐𝑐𝑚𝑚 ), where ≻𝑐𝑐 is
the strict priority ranking of school 𝑐𝑐 ∈ 𝐶𝐶 over 𝐴𝐴; 𝑎𝑎 ≻𝑐𝑐 𝑎𝑎′
means that student 𝑎𝑎 has higher priority than student 𝑎𝑎′ to
be enrolled at school 𝑐𝑐;

6. a type space 𝑇𝑇 = 𝑡𝑡1, ..., 𝑡𝑡𝑘𝑘;
7. a type function 𝜏𝜏:𝑆𝑆 ←→ 𝑇𝑇 , where 𝜏𝜏(𝑎𝑎) is the type of student

𝑎𝑎;
8. for each school 𝑐𝑐, the type specific constraint vector 𝑞𝑞𝑇𝑇𝑐𝑐 =

(𝑞𝑞𝑡𝑡0𝑐𝑐 , ..., 𝑞𝑞
𝑡𝑡𝑘𝑘
𝑐𝑐 ) such that 𝑞𝑞𝑇𝑇𝑐𝑐 ⩽ 𝑞𝑞𝑐𝑐 for all 𝑡𝑡 ∈ 𝑇𝑇 .

3 School Choice Applications
To incorporate diversity quotas into school choice mech-

anisms, we start with some definitions.
1. For each school 𝑐𝑐𝑖𝑖, 𝑄𝑄0(𝑐𝑐𝑖𝑖) of the seats are determined by

the students’ composite scores, while 𝑄𝑄𝑡𝑡(𝑐𝑐𝑖𝑖) of the seats
are set aside for students in each of the 𝑡𝑡 types, with com-
posite score determining relative priority among students
in type 𝑡𝑡. Therefore, Σ𝑡𝑡𝑄𝑄𝑡𝑡(𝑐𝑐𝑖𝑖) = 𝑞𝑞(𝑐𝑐𝑖𝑖).

2. The matching algorithm treats each selective enrollment
high school as 𝑡𝑡 + 1 hypothetical schools: The set 𝑆𝑆𝑏𝑏 of
seats at each school b is partitioned into subsets 𝑆𝑆𝑏𝑏 =
𝑆𝑆0𝑏𝑏 ∪ 𝑆𝑆1𝑏𝑏 ∪ . . . ∪ 𝑆𝑆𝑡𝑡𝑏𝑏. The seats in 𝑆𝑆0𝑏𝑏 are “open seats,”
for which students’ priorities are determined entirely by
composite scores. Seats in 𝑆𝑆𝑖𝑖𝑏𝑏 are “reserved” for students
of type i—they give type i students priority over other
students, and use composite scores to rank students within
type i.

3. The matching algorithm must convert students’ true
preferences 𝑃𝑃𝑖𝑖 into strict preferences over the full set
of hypothetical schools.

The last definition is of particular interest, since we are
given full autonomy over how we will set the preference of
hypothetical schools over one another. To elaborate, take stu-
dent 𝑎𝑎 of type 𝑡𝑡. Will he prefer to be placed in the set 𝑆𝑆0𝑏𝑏 or
𝑆𝑆𝑡𝑡𝑏𝑏 for school 𝑏𝑏? Obviously, he is ineligible for a place in
𝑆𝑆𝑖𝑖𝑏𝑏 where 𝑖𝑖 ≠ 𝑡𝑡 and 𝑖𝑖 ≠ 0, so that preference is trivial—just
place 𝑆𝑆𝑖𝑖𝑏𝑏 such that a 𝑃𝑃𝑎𝑎 𝑆𝑆𝑖𝑖𝑏𝑏. The preference between 𝑆𝑆0𝑏𝑏 and
𝑆𝑆𝑡𝑡𝑏𝑏 is much less obvious; to solve this dilemma, we apply the
Gale-Shapley algorithm for each case.

Assume we have students 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4 and school 𝑆𝑆 with
preference 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 ≻ 𝑎𝑎4. Students 𝑎𝑎1 and 𝑎𝑎4 are
in type 1 and students 𝑎𝑎2 and 𝑎𝑎3 are in type 2. 𝑆𝑆 has a
quota of 3 and must take in at least one student from each
type. In other words, |𝑆𝑆0𝑏𝑏| = |𝑆𝑆1𝑏𝑏| = |𝑆𝑆2𝑏𝑏| = 1. If we
assume 𝑆𝑆0𝑏𝑏 𝑃𝑃𝑎𝑎 𝑆𝑆𝑡𝑡𝑏𝑏 for each student 𝑎𝑎 of type 𝑡𝑡, the Gale-

Shapley algorithm yields,
(

𝑆𝑆0 𝑆𝑆1 𝑆𝑆2
𝑎𝑎1 𝑎𝑎2 𝑎𝑎4

)

which is unsta-

ble with a blocking pair of (𝑎𝑎3, 𝑆𝑆). On the other hand, if 𝑆𝑆𝑡𝑡𝑏𝑏
𝑃𝑃𝑎𝑎 𝑆𝑆0𝑏𝑏, the Gale-Shapley algorithm yields a stable matching

of
(

𝑆𝑆0 𝑆𝑆1 𝑆𝑆2
𝑎𝑎3 𝑎𝑎1 𝑎𝑎2

)

.

According to this observation, it only seems right that we
adapt the assumption of 𝑆𝑆𝑡𝑡𝑏𝑏 𝑃𝑃𝑎𝑎 𝑆𝑆0𝑏𝑏. Under this definition, we
get the following result:
Theorem 3.1. The matching obtained from the Gale-Shapley
algorithm with minority reserves is stable.

2

Proof) Assume there exists a school 𝑆𝑆 and a student 𝑎𝑎 in type
𝑖𝑖 such that 𝑆𝑆𝑆𝑆𝑎𝑎𝜇𝜇(𝑎𝑎). At some point a applied to 𝑆𝑆𝑖𝑖 and S0
and was rejected. Every student in 𝑆𝑆0 is ranked higher than
student 𝑎𝑎. Additionally, every student in 𝑆𝑆𝑖𝑖 is ranked higher
than any student of type 𝑖𝑖 in𝑆𝑆0. Therefore, (𝑎𝑎𝑎 𝑆𝑆) cannot form
a blocking pair and the matching is stable. ■

We now wonder whether the qualities of the original Gale-
Shapley algorithm will transfer to this framework.
Theorem 3.2. The matching obtained from the Gale-Shapley
algorithm with minority reserves is Pareto-efficient for stu-
dents (student-optimal) out of all stable matchings.
Proof) Because the Gale-Shapley algorithm is student-
efficient, this matching is optimal for students out of all sta-
ble matchings. However, we must also observe whether the
matching is Pareto efficient for all matchings. Consider the
following example:

𝑝𝑝(𝑎𝑎1) = 𝑐𝑐1𝑎 𝑐𝑐2𝑎 𝑎𝑎1
𝑝𝑝(𝑎𝑎2) = 𝑐𝑐2𝑎 𝑐𝑐1𝑎 𝑎𝑎2
𝑝𝑝(𝑎𝑎3) = 𝑐𝑐1𝑎 𝑐𝑐2𝑎 𝑎𝑎3
𝑝𝑝(𝑐𝑐1) = 𝑎𝑎2𝑎 𝑎𝑎3𝑎 𝑎𝑎1𝑎 𝑐𝑐1
𝑝𝑝(𝑐𝑐2) = 𝑎𝑎1𝑎 𝑎𝑎3𝑎 𝑎𝑎2𝑎 𝑐𝑐2

If we apply the Gale-Shapley algorithm where the stu-
dent applies to the school, we get a stable matching
(

𝑐𝑐1 𝑐𝑐2
𝑎𝑎2 𝑎𝑎1

)

. However, the Pareto optimal matching for stu-

dents is
(

𝑐𝑐1 𝑐𝑐2
𝑎𝑎1 𝑎𝑎2

)

, so the Gale-Shapley algorithm is not

Pareto-efficient out of all mechanisms. ■
The Gale-Shapley algorithm is student-optimal out of all

stable mechanisms but may not be Pareto efficient for the stu-
dents. Another characteristic we must observe is the strategy-
proofness (non-manipulability) of the Gale-Shapley mecha-
nism.
Theorem 3.3. The matching obtained from the Gale-Shapley
algorithm with minority reserves is strategy-proof.
Proof) Assume otherwise. Then, there will be a student-
school matching that a student could misreport his prefer-
ences.

Claim 1: The mechanism that yields the student-optimal
stable matching (in terms of stated preferences) makes it a
dominant strategy for each student to state his true prefer-
ences.

Proof. Consider for contradiction that some nonempty
subset 𝐴𝐴′ of students misreport their preferences and are
strictly better off under some matching 𝜇𝜇, which is stable
for 𝐴𝐴′. This would imply that 𝜇𝜇(𝑎𝑎) ≻𝑎𝑎 𝐺𝐺𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎) for every
𝑎𝑎 ∈ 𝐴𝐴′.
1. 𝜇𝜇(𝐴𝐴′ ) ≠ 𝐺𝐺𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚(𝐴𝐴′). Choose 𝑐𝑐 ∈ 𝜇𝜇(𝐴𝐴′)∖𝐺𝐺𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚(𝐴𝐴′), for

example 𝑐𝑐 = 𝜇𝜇(𝑎𝑎′). Then, 𝑎𝑎′ prefers 𝑐𝑐 to 𝐺𝐺𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎′), so𝑐𝑐
prefers 𝐺𝐺𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚(𝑐𝑐) = 𝑎𝑎 to 𝑎𝑎′. But 𝑎𝑎 is not in 𝐴𝐴′ since 𝑐𝑐 is
not in 𝜇𝜇(𝐴𝐴′), so 𝑎𝑎 prefers 𝑐𝑐 to 𝜇𝜇(𝑚𝑚). Thus (𝑎𝑎𝑎 𝑐𝑐) blocks 𝜇𝜇.

2. 𝜇𝜇(𝐴𝐴′) = 𝐺𝐺𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚(𝐴𝐴′) = 𝐶𝐶 ′. Let 𝑐𝑐 be the last school in 𝐶𝐶 ′

to receive an application from an acceptable student of 𝐴𝐴′

in the Gale-Shapley algorithm. Since all 𝑐𝑐 ∈ 𝐶𝐶 ′ have re-
jected acceptable students from 𝐴𝐴′, 𝑐𝑐 had some student 𝑎𝑎
on the waitlist when it received its last application. Then,
(𝑎𝑎𝑎 𝑐𝑐) is the desired blocking pair because 𝑎𝑎 is not in𝐴𝐴′ be-
cause if so, after having been rejected by 𝑐𝑐, he would have
applied again to another member of 𝐶𝐶 ′, contradicting the
fact that 𝑐𝑐 received the last application. But a prefers 𝑐𝑐 to
his school under 𝐺𝐺𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚 and since he is no better off under
𝜇𝜇, he prefers 𝑐𝑐 to 𝜇𝜇(𝑎𝑎). On the other hand, 𝑎𝑎 was the last
student to be rejected by 𝑐𝑐 so 𝑐𝑐 must have rejected another
student under 𝜇𝜇 before it rejected 𝑎𝑎. Hence 𝑐𝑐 prefers 𝑎𝑎 to
the last student in 𝜇𝜇(𝑐𝑐).

From Claim 1, we get a contradiction. ■
Now that we have discussed the features of the Gale-

Shapley algorithm, we compare the performance of the Gale-
Shapley and Chicago mechanisms. For this, we need to ex-
amine the behavior of the Chicago mechanism under the
same minority-reserves conditions as the Gale-Shapley al-
gorithm.
Theorem 3.4. The matching obtained from the Chicago al-
gorithm with minority reserves is not stable.

Proof) It is sufficient to prove that the Chicago algorithm
without minority reserves is not stable. Consider a set of stu-
dents 𝑎𝑎1𝑎 𝑎𝑎2𝑎 𝑎𝑎3 and schools 𝑐𝑐1𝑎 𝑐𝑐2 such that

𝑝𝑝(𝑎𝑎1) = 𝑐𝑐1𝑎 𝑐𝑐2𝑎 𝑎𝑎1
𝑝𝑝(𝑎𝑎2) = 𝑐𝑐2𝑎 𝑐𝑐1𝑎 𝑎𝑎2
𝑝𝑝(𝑎𝑎3) = 𝑐𝑐1𝑎 𝑐𝑐2𝑎 𝑎𝑎3
𝑝𝑝(𝑐𝑐1) = 𝑎𝑎1𝑎 𝑎𝑎3𝑎 𝑎𝑎2𝑎 𝑐𝑐1
𝑝𝑝(𝑐𝑐2) = 𝑎𝑎1𝑎 𝑎𝑎3𝑎 𝑎𝑎2𝑎 𝑐𝑐2

Then the resulting matching from the Chicago algorithm

without minority reserves is
(

𝑐𝑐1 𝑐𝑐2
𝑎𝑎1 𝑎𝑎2

)

, which is not stable

since (𝑐𝑐2𝑎 𝑎𝑎3) is a blocking pair. ■
Theorem 3.5. The matching obtained from the Chicago al-
gorithm with minority reserves is not Pareto-efficient out of
all stable matchings.

Proof) Assume that there is a matching 𝜇𝜇 such that all
students are better off. Then there is a student 𝑎𝑎1 such that
𝜇𝜇(𝑎𝑎1)𝑆𝑆(𝑎𝑎1)𝐶𝐶𝐶𝐶(𝑎𝑎1). Let us define 𝑐𝑐1 = 𝐶𝐶𝐶𝐶(𝑎𝑎1) and 𝑐𝑐2 =
𝜇𝜇(𝑎𝑎1). Since 𝜇𝜇 strictly dominates𝐶𝐶𝐶𝐶 , we know that 𝜇𝜇(𝑐𝑐2) ≻(
𝑐𝑐2)𝐶𝐶𝐶𝐶(𝑐𝑐2), meaning that there exists a student 𝑎𝑎2 such that
ranked 𝑐𝑐2 prefers 𝑎𝑎2, and either 𝑎𝑎2 ranked 𝑐𝑐2 higher than 𝑎𝑎1
ranked 𝑐𝑐2 or 𝑎𝑎1 and 𝑎𝑎2 ranked 𝑐𝑐2 in the same ranking, but
𝑐𝑐2 prefers 𝑎𝑎2. Denote 𝑟𝑟(𝑎𝑎𝑖𝑖𝑎 𝑐𝑐𝑗𝑗) as the ranking 𝑎𝑎𝑖𝑖 gave to 𝑐𝑐𝑗𝑗 ,
and inductively define 𝑐𝑐(𝑚𝑚 + 1) = 𝜇𝜇(𝑎𝑎𝑚𝑚) and 𝑎𝑎(𝑚𝑚 + 1) =
𝐶𝐶𝐶𝐶(𝜇𝜇(𝑎𝑎𝑚𝑚)). Then

𝑟𝑟(𝑎𝑎(𝑚𝑚 + 1)𝑎 𝑐𝑐(𝑚𝑚 + 1)) = 𝑟𝑟(𝐶𝐶𝐶𝐶(𝜇𝜇(𝑐𝑐𝑚𝑚))𝑎 𝜇𝜇(𝑎𝑎𝑚𝑚)))

⩽ 𝑟𝑟(𝑎𝑎𝑚𝑚𝑎 𝜇𝜇(𝑎𝑎𝑚𝑚)) < 𝑟𝑟(𝑎𝑎𝑚𝑚𝑎 𝑐𝑐𝑚𝑚)
, and by the method of infinite decent, we find that there is a
contradiction. ■
Theorem 3.6. The matching obtained from the Chicago al-
gorithm with minority reserves is not strategy-proof.

3
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Proof) We continue with the example of students and
schools given in 3.4:

𝑝𝑝(𝑎𝑎1) = 𝑐𝑐1, 𝑐𝑐2, 𝑎𝑎1
𝑝𝑝(𝑎𝑎2) = 𝑐𝑐2, 𝑐𝑐1, 𝑎𝑎2
𝑝𝑝(𝑎𝑎3) = 𝑐𝑐1, 𝑐𝑐2, 𝑎𝑎3
𝑝𝑝(𝑐𝑐1) = 𝑎𝑎1, 𝑎𝑎3, 𝑎𝑎2, 𝑐𝑐1
𝑝𝑝(𝑐𝑐2) = 𝑎𝑎1, 𝑎𝑎3, 𝑎𝑎2, 𝑐𝑐2

The matching resulting from the Chicago algorithm is
(

𝑐𝑐1 𝑐𝑐2
𝑎𝑎1 𝑎𝑎2

)

, which can be manipulated by 𝑎𝑎3 if he decides to report his
preferences as 𝑃𝑃 (𝑎𝑎3) = 𝑐𝑐2, 𝑐𝑐1, 𝑎𝑎3. ■

The Chicago mechanism is neither stable nor strategy-
proof when evaluated in the context of minority reserves
within a school choice system. However, it is Pareto-optimal.
When both the Chicago and Gale-Shapley mechanisms are
subjected to truncated preferences, they are found to be nei-
ther stable nor Pareto-optimal, and both are manipulable.
Therefore, the question arises as to which mechanism is more
manipulable than the other. While it is possible that neither
mechanism is more manipulable, if it can be demonstrated
that the Gale-Shapley algorithm produces a more favorable
matching than the Chicago algorithm under truncated prefer-
ences, it can be concluded that the Gale-Shapley algorithm is
objectively superior to the Chicago algorithm in this context.
Theorem 3.7. Suppose each student has a complete rank or-
dering and 𝑘𝑘 𝑘 1. The old Chicago Public Schools mecha-
nism with minority reserves 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 is at least as manipu-
lable as any weakly stable mechanism.

Proof) First, fix a problem 𝑃𝑃 and let Φ be an arbitrary
mechanism that is weakly stable. Suppose that 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 is not
manipulable for problem 𝑃𝑃 .

Claim 1: Any student assigned under 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃 ) receives
her top choice school.

Proof. There must be a student that is assigned to a school
she has not ranked first. If not, since each student has a com-
plete rank order list, |𝐶𝐶𝑡𝑡| 𝑘 𝑄𝑄𝑡𝑡 for all types 𝑡𝑡 and 𝑘𝑘 𝑘 1,
there must be a student 𝑎𝑎 that is assigned to a school she has
not ranked first. Consider the highest composite score stu-
dent 𝑚𝑚 who is unassigned and is in the same type as student 𝑎𝑎.
Student 𝑚𝑚 can rank school 𝑆𝑆 first and will be assigned a seat
there in the first round of 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 mechanism instead of some
student who has not ranked school 𝑆𝑆 first. That contradicts
𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 is not manipulable for problem 𝑃𝑃 .

Claim 2: The set of students who are assigned a seat under
𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑃𝑃 ) is equal to the set of top Σ𝑆𝑆𝑞𝑞𝑡𝑡𝑆𝑆 composite score
students in type t and the next Σ𝑆𝑆𝑞𝑞0𝑆𝑆 students who are not
assigned a seat.

Proof. If not, there is a school seat assigned to a student y
who does not have a top Σ𝑆𝑆𝑞𝑞𝑡𝑡𝑆𝑆 score in type 𝑡𝑡 or to a student
𝑧𝑧 who ranked lower than the next Σ𝑆𝑆𝑞𝑞0𝑆𝑆 students.
1. Let student 𝑚𝑚 be the highest scoring top Σ𝑆𝑆𝑞𝑞𝑡𝑡𝑆𝑆 student in

type 𝑡𝑡 who is not assigned. Since student 𝑚𝑚 has a complete

rank order list, she can manipulate 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 by ranking stu-
dent 𝑦𝑦’s assignment as her top choice again contradicting
𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 is not manipulable for problem 𝑃𝑃 .

2. Let student 𝑗𝑗 be the highest scoring student in who ranked
lower than the next Σ𝑆𝑆𝑞𝑞0𝑆𝑆 students. Since student 𝑗𝑗 has a
complete rank order list, she can manipulate 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 by
ranking student 𝑧𝑧’s assignment as her top choice again
contradicting 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 is not manipulable for problem 𝑃𝑃 .

Claim 3. In problem P, the matching obtained through
𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑃𝑃 ) is the unique weakly stable matching.

Proof. Let us define the term “top students” as the top
Σ𝑆𝑆𝑞𝑞𝑡𝑡𝑆𝑆 composite score students in type 𝑡𝑡 and the next Σ𝑆𝑆𝑞𝑞0𝑆𝑆
students who are not assigned a seat. By Claims 1 and 2,
it is possible to assign the top students a seat at their top
choice school under 𝑃𝑃 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑃𝑃 ) picks that matching.
Let 𝜇𝜇 ≠ 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑃𝑃 ). That means under 𝜇𝜇there exists a top
student 𝑚𝑚 who is not assigned to her top choice 𝑠𝑠. Pick the
highest composite score such student 𝑚𝑚.

Since all higher score students are assigned to their top
choices, either there is a vacant seat at her top choice 𝑠𝑠 or it
admitted a student with lower composite score. It is trivial
that the pair (𝑚𝑚, 𝑠𝑠) strongly blocks matching 𝜇𝜇 in the former
case, and in the latter, there is always a student ranked lower
than 𝑚𝑚 who is not in the quota of his type. Hence 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑃𝑃 )
is the unique weakly stable matching under 𝑃𝑃 . We are now
ready to complete the proof. By Claim 3, Φ(𝑃𝑃 ) = 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑃𝑃 )
and hence mechanism Φ assigns all top students a seat at
their top choices. None of the top students has an incentive to
manipulate Φ since each receives her top choice. Moreover,
no other student can manipulateΦ because regardless of their
stated preferences, Φ(𝑃𝑃 ) = 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑃𝑃 ) remains the unique
weakly stable matching and hence𝜑𝜑 picks the same matching
for the manipulated economy. Hence, any other weakly stable
mechanism is also not manipulable under P. ■
Proposition 3.8 Suppose there are at least 𝑘𝑘 schools and let
𝑘𝑘 𝑘 1. The truncated old Chicago mechanism for minori-
ties (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) is more manipulable than the truncated Gale-
Shapley mechanism (𝐺𝐺𝑆𝑆𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚) for minorities.
Proof) If we look at a problem with three schools and three

students whose preferences are truncated as the following:
𝑝𝑝(𝑎𝑎1) = 𝑐𝑐1, 𝑐𝑐2
𝑝𝑝(𝑎𝑎2) = 𝑐𝑐3, 𝑐𝑐2
𝑝𝑝(𝑎𝑎3) = 𝑐𝑐1, 𝑐𝑐3
𝑝𝑝(𝑐𝑐1) = 𝑎𝑎1, 𝑎𝑎3, 𝑎𝑎2, 𝑐𝑐1
𝑝𝑝(𝑐𝑐2) = 𝑎𝑎1, 𝑎𝑎3, 𝑎𝑎2, 𝑐𝑐2
𝑝𝑝(𝑐𝑐3) = 𝑎𝑎1, 𝑎𝑎3, 𝑎𝑎2, 𝑐𝑐3

The Gale-Shapley mechanism yields the following match-
ing:

(

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

)

, which is strategy-proof. However, the Chicago mechanism
results in

(

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3
𝑎𝑎1 𝑎𝑎⬚ 𝑎𝑎2

)

4

, which is manipulable since 𝑎𝑎3 can falsely report his pref-
erences as 𝑃𝑃 (𝑎𝑎3) = 𝑐𝑐3, 𝑐𝑐2 and be better off by being
matched with 𝑐𝑐3. Therefore, 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 is more manipulable
than 𝐺𝐺𝐺𝐺𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚. ■
Hence, we can conclude that in a minority-reserve context,

when preferences are truncated, the Chicago mechanism is
more manipulable than the Gale-Shapley mechanism.
Conjecture 3.9. We can find counterexamples in the proof
above regardless of the number of schools and students, num-
ber of types, and quota for each school.

Explanation) To do this, we first define 𝑞𝑞(𝑚𝑚,𝑖𝑖) as the quota of
type 𝑖𝑖 for school 𝑚𝑚 (𝑚𝑚 starts at 1, 𝑖𝑖 starts at 0). For example, 𝑞𝑞1,5
is the quota of type 5 students for school 1. Also, define Σ𝑚𝑚𝑞𝑞𝑚𝑚,𝑖𝑖
by 𝑄𝑄𝑖𝑖(> |𝐶𝐶𝑖𝑖| for 𝑖𝑖 ⩽ 1), which is the number of students in
school 𝑚𝑚. We are curious whether we can always find a set
of preferences for any 𝑡𝑡 and 𝑞𝑞𝑚𝑚,𝑖𝑖 . This problem is yet to be
solved. ■

4 Conclusion
The focus of our research was to compare the performance

of two different mechanisms, the Gale-Shapley algorithm
and the Chicago mechanism, in a school choice context. We
evaluated whether these mechanisms possessed the proper-
ties of stability, Pareto-efficiency, and manipulability, and
compared their performance when preferences are truncated.

Our findings indicated that when preferences are trun-
cated, the Chicago mechanism is more manipulable than the
Gale-Shapley algorithm. This has important implications for
understanding the strengths and weaknesses of each mecha-
nism in practical applications.

Furthermore, this study contributes to the existing body
of research by filling a gap in the literature. We constructed
a framework that enables researchers to assess the perfor-
mance of matching mechanisms in minority reserves. Over-
all, this research provides valuable insights into the real-
world applications of matching mechanisms and underscores
the need for careful consideration of specific characteristics
when selecting an appropriate mechanism.
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